Jackson Virgil E, Felmy Andrew R, Dixon David A
†Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States.
‡Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
J Phys Chem A. 2015 Mar 26;119(12):2926-39. doi: 10.1021/jp5118272. Epub 2015 Mar 16.
Aqueous metal ions play an important role in many areas of chemistry. The acidities of Be(H2O)4, M(H2O)6, M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and M(H2O)n, M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models. The most common binding motif of the majority of the metal +2 complexes is coordination number (CN) 6, with each hexaaquo cluster having reasonably high symmetry for the best arrangement of the water molecules in the first solvation shell. Be(2+) is tetracoordinated, but a second solvation shell of 8 waters is needed to predict the pKa. The Ca(2+) and Sr(2+) aquo clusters have a coordination number of 7 or 8 as found in terms of the energy of the reaction M(H2O)7(2+) + H2O → M(H2O)8(2+) and the pKa values. The calculated geometries are in reasonable agreement with experiment. The SCRF calculations with the conductor-like screening model (COSMO), and the conductor polarized continuum model (CPCM) using COSMO-RS radii, consistently agree best with experiment at the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels of theory. The CCSD(T) level provides the most accurate pKa's, and the MP2 level also provides reliable predictions. Our predictions were used to elucidate the properties of metal +2 ion complexes. The pKa predictions provide confirmation of the size of the first solvation shell sizes. The calculations show that it is still difficult to predict pKa's using this cluster/implicit solvent approach to better than 1 pKa unit.
水基金属离子在许多化学领域中起着重要作用。利用密度泛函理论、二阶Møller-Plesset微扰理论(MP2)和耦合簇CCSD(T)理论在气相中预测了[Be(H₂O)₄]²⁺、[M(H₂O)₆]²⁺(M = Mg²⁺、Mn²⁺、Fe²⁺、Co²⁺、Ni²⁺、Cu²⁺、Zn²⁺、Cd²⁺和Hg²⁺)以及[M(H₂O)ₙ]²⁺(M = Ca²⁺和Sr²⁺,n = 7和8)配合物的酸度。通过使用具有不同溶剂化模型的自洽反应场(SCRF)计算来预测水溶液中的pKa值。大多数金属+2配合物最常见的结合模式是配位数(CN)为6,每个六水合簇具有相当高的对称性,以便在第一溶剂化层中实现水分子的最佳排列。Be²⁺是四配位的,但需要一个由8个水分子组成的第二溶剂化层来预测pKa。根据反应M(H₂O)₇²⁺ + H₂O → M(H₂O)₈²⁺的能量和pKa值发现,Ca²⁺和Sr²⁺水合簇的配位数为7或8。计算得到的几何结构与实验结果合理吻合。使用导体类屏蔽模型(COSMO)以及使用COSMO-RS半径的导体极化连续介质模型(CPCM)进行的SCRF计算,在MP2/aug-cc-pVDZ和CCSD(T)/aug-cc-pVDZ理论水平上与实验结果始终最为吻合。CCSD(T)水平提供了最准确的pKa值,MP2水平也提供了可靠的预测。我们的预测用于阐明金属+2离子配合物的性质。pKa预测证实了第一溶剂化层的大小。计算表明,使用这种簇/隐式溶剂方法预测pKa值仍难以优于1个pKa单位。