Suppr超能文献

在火星上寻找 RNA 世界。

In search of the RNA world on Mars.

机构信息

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Geobiology. 2021 May;19(3):307-321. doi: 10.1111/gbi.12433. Epub 2021 Feb 10.

Abstract

Advances in origins of life research and prebiotic chemistry suggest that life as we know it may have emerged from an earlier RNA World. However, it has been difficult to reconcile the conditions used in laboratory experiments with real-world geochemical environments that may have existed on the early Earth and hosted the origin(s) of life. This challenge is due to geologic resurfacing and recycling that have erased the overwhelming majority of the Earth's prebiotic history. We therefore propose that Mars, a planet frozen in time, comprised of many surfaces that have remained relatively unchanged since their formation > 4 Gya, is the best alternative to search for environments consistent with geochemical requirements imposed by the RNA world. In this study, we synthesize in situ and orbital observations of Mars and modeling of its early atmosphere into solutions containing a range of pHs and concentrations of prebiotically relevant metals (Fe , Mg , and Mn ) spanning various candidate aqueous environments. We then experimentally determine RNA degradation kinetics due to metal-catalyzed hydrolysis (cleavage) and evaluate whether early Mars could have been permissive toward the accumulation of long-lived RNA polymers. Our results indicate that a Mg -rich basalt sourcing metals to a slightly acidic (pH 5.4) environment mediates the slowest rates of RNA cleavage, though geologic evidence and basalt weathering models suggest aquifers on Mars would be near neutral (pH ~ 7). Moreover, the early onset of oxidizing conditions on Mars has major consequences regarding the availability of oxygen-sensitive metals (i.e., Fe and Mn ) due to increased RNA degradation rates and precipitation. Overall, (a) low pH decreases RNA cleavage at high metal concentrations; (b) acidic to neutral pH environments with Fe or Mn cleave more RNA than Mg ; and (c) alkaline environments with Mg dramatically cleaves more RNA while precipitates were observed for Fe and Mn .

摘要

生命起源研究和前生物化学的进展表明,我们所知道的生命可能源自更早的 RNA 世界。然而,将实验室实验中使用的条件与可能存在于早期地球上并承载生命起源的真实世界地球化学环境相协调一直具有挑战性。这种挑战归因于地质表面再造和再循环,它们抹去了地球前生物历史的绝大多数。因此,我们提出,火星是一个时间冻结的行星,由许多自形成以来相对保持不变的表面组成,时间超过 40 亿年,是寻找与 RNA 世界施加的地球化学要求一致的环境的最佳选择。在这项研究中,我们将火星的原位和轨道观测以及对其早期大气的建模综合到含有一系列 pH 值和浓度的溶液中,涉及到各种候选水相环境中与前生物相关的金属(Fe、Mg 和 Mn)。然后,我们通过金属催化水解(断裂)实验确定 RNA 降解动力学,并评估早期火星是否有利于长寿命 RNA 聚合物的积累。我们的结果表明,富含 Mg 的玄武岩为略带酸性(pH 5.4)的环境提供金属,介导了最慢的 RNA 断裂速率,尽管地质证据和玄武岩风化模型表明火星上的含水层接近中性(pH~7)。此外,火星氧化条件的早期出现对含氧敏感金属(即 Fe 和 Mn)的可用性产生了重大影响,因为这会导致 RNA 降解率增加和沉淀。总体而言,(a)高金属浓度下的低 pH 会降低 RNA 断裂;(b)具有 Fe 或 Mn 的酸性到中性 pH 环境比 Mg 更能断裂 RNA;(c)碱性环境中 Mg 会剧烈地断裂 RNA,同时观察到 Fe 和 Mn 的沉淀。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da82/8248371/db20b7df77a2/GBI-19-307-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验