Suppr超能文献

用于剂量测定估计的86Y标记的前列腺特异性膜抗原抑制剂的临床前评估。

Preclinical evaluation of 86Y-labeled inhibitors of prostate-specific membrane antigen for dosimetry estimates.

作者信息

Banerjee Sangeeta Ray, Foss Catherine A, Pullambhatla Mrudula, Wang Yuchuan, Srinivasan Senthamizhchelvan, Hobbs Robert F, Baidoo Kwamena E, Brechbiel Martin W, Nimmagadda Sridhar, Mease Ronnie C, Sgouros George, Pomper Martin G

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and.

出版信息

J Nucl Med. 2015 Apr;56(4):628-34. doi: 10.2967/jnumed.114.149062. Epub 2015 Feb 26.

Abstract

UNLABELLED

(86)Y (half-life = 14.74 h, 33% β(+)) is within an emerging class of positron-emitting isotopes with relatively long physical half-lives that enables extended imaging of biologic processes. We report the synthesis and evaluation of 3 low-molecular-weight compounds labeled with (86)Y for imaging the prostate-specific membrane antigen (PSMA) using PET. Impetus for the study derives from the need to perform dosimetry estimates for the corresponding (90)Y-labeled radiotherapeutics.

METHODS

Multistep syntheses were used in preparing (86)Y- 4: - 6: PSMA inhibition constants were evaluated by competitive binding assay. In vivo characterization using tumor-bearing male mice was performed by PET/CT for (86)Y- 4: - 6: and by biodistribution studies of (86)Y- 4: and (86)Y- 6: out to 24 h after injection. Quantitative whole-body PET scans were recorded to measure the kinetics for 14 organs in a male baboon using (86)Y- 6 RESULTS: Compounds (86)Y- 4: - 6: were obtained in high radiochemical yield and purity, with specific radioactivities of more than 83.92 GBq/μmol. PET imaging and biodistribution studies using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu tumor-bearing mice revealed that (86)Y- 4-6: had high site-specific uptake in PSMA-positive PC-3 PIP tumor starting at 20 min after injection and remained high at 24 h. Compound (86)Y- 6: demonstrated the highest tumor uptake and retention, with 32.17 ± 7.99 and 15.79 ± 6.44 percentage injected dose per gram (%ID/g) at 5 and 24 h, respectively. Low activity concentrations were associated with blood and normal organs, except for the kidneys, a PSMA-expressing tissue. PET imaging in baboons reveals that all organs have a 2-phase (rapid and slow) clearance, with the highest uptake (8 %ID/g) in the kidneys at 25 min. The individual absolute uptake kinetics were used to calculate radiation doses using the OLINDA/EXM software. The highest mean absorbed dose was received by the renal cortex, with 1.9 mGy per MBq of (86)Y- 6:

CONCLUSION

Compound (86)Y- 6: is a promising candidate for quantitative PET imaging of PSMA-expressing tumors. Dosimetry calculations indicate promise for future (90)Y or other radiometals that could use a similar chelator/scaffold combination for radiopharmaceutical therapy based on the structure of 6.

摘要

未标记

(86)钇(半衰期 = 14.74 小时,33%为β(+))属于一类新兴的正电子发射同位素,其物理半衰期相对较长,能够对生物过程进行长时间成像。我们报告了 3 种用(86)钇标记的低分子量化合物的合成与评估,用于使用正电子发射断层显像(PET)对前列腺特异性膜抗原(PSMA)进行成像。该研究的动力源于需要对相应的(90)钇标记的放射治疗药物进行剂量测定。

方法

采用多步合成法制备(86)钇 - 4 - 6。通过竞争结合试验评估 PSMA 抑制常数。使用荷瘤雄性小鼠进行体内表征,对(86)钇 - 4 - 6进行正电子发射断层显像/计算机断层扫描(PET/CT),并对(86)钇 - 4和(86)钇 - 6在注射后长达 24 小时进行生物分布研究。使用(86)钇 - 6记录雄性狒狒 14 个器官的动力学的定量全身 PET 扫描结果:化合物(86)钇 - 4 - 6以高放射化学产率和纯度获得,比活度超过 83.92 GBq/μmol。使用 PSMA 阳性的 PC - 3 PIP 和 PSMA 阴性的 PC - 3 flu 荷瘤小鼠进行的 PET 成像和生物分布研究表明,(86)钇 - 4 - 6在注射后 20 分钟开始在 PSMA 阳性的 PC - 3 PIP 肿瘤中具有高部位特异性摄取,并在 24 小时时保持较高水平。化合物(86)钇 - 6表现出最高的肿瘤摄取和滞留,在 5 小时和 24 小时时分别为每克注射剂量的 32.17 ± 7.99%和 15.79 ± 6.44%(%ID/g)。除肾脏(一种表达 PSMA 的组织)外,血液和正常器官的活性浓度较低。狒狒的 PET 成像显示所有器官都有两相(快速和缓慢)清除,在 25 分钟时肾脏摄取最高(8 %ID/g)。使用 OLINDA/EXM 软件利用个体绝对摄取动力学来计算辐射剂量。肾皮质接受的平均吸收剂量最高,每兆贝可(86)钇 - 6为 1.9 毫戈瑞。

结论

化合物(86)钇 - 6是用于表达 PSMA 的肿瘤定量 PET 成像的有前景的候选物。剂量测定计算表明,基于 6 的结构,对于未来的(90)钇或其他可使用类似螯合剂/支架组合进行放射性药物治疗的放射性金属有应用前景。

相似文献

1
Preclinical evaluation of 86Y-labeled inhibitors of prostate-specific membrane antigen for dosimetry estimates.
J Nucl Med. 2015 Apr;56(4):628-34. doi: 10.2967/jnumed.114.149062. Epub 2015 Feb 26.
2
Preclinical Evaluation and Pilot Clinical Study of AlF-PSMA-BCH for Prostate Cancer PET Imaging.
J Nucl Med. 2019 Sep;60(9):1284-1292. doi: 10.2967/jnumed.118.221671. Epub 2019 Feb 22.
5
Synthesis and pre-clinical evaluation of a new class of high-affinity F-labeled PSMA ligands for detection of prostate cancer by PET imaging.
Eur J Nucl Med Mol Imaging. 2017 Apr;44(4):647-661. doi: 10.1007/s00259-016-3556-5. Epub 2016 Nov 15.
6
Development of F-Fluoroglycosylated PSMA-Ligands with Improved Renal Clearance Behavior.
Mol Pharm. 2020 Mar 2;17(3):933-943. doi: 10.1021/acs.molpharmaceut.9b01179. Epub 2020 Feb 17.
7
In Vitro and In Vivo Characterization of an F-AlF-Labeled PSMA Ligand for Imaging of PSMA-Expressing Xenografts.
J Nucl Med. 2019 Jul;60(7):1017-1022. doi: 10.2967/jnumed.118.218941. Epub 2019 Jan 17.
8
Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile.
Mol Pharm. 2018 Mar 5;15(3):934-946. doi: 10.1021/acs.molpharmaceut.7b00877. Epub 2018 Feb 5.
9
Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy.
Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1280-92. doi: 10.1007/s00259-014-2713-y. Epub 2014 Feb 28.

引用本文的文献

1
Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs.
Theranostics. 2022 Jan 1;12(1):232-259. doi: 10.7150/thno.62851. eCollection 2022.
2
Agent Optimization: Absorption, Distribution, Metabolism, Excretion, Dose, and Decay.
J Nucl Med. 2021 Apr;62(4):455-456. doi: 10.2967/jnumed.120.258095. Epub 2020 Dec 4.
3
Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects.
Curr Radiopharm. 2021;14(4):325-339. doi: 10.2174/1874471013999200820165734.
4
Coordination chemistry of [Y(pypa)] and comparison immuno-PET imaging of [Sc]Sc- and [Y]Y-pypa-phenyl-TRC105.
Dalton Trans. 2020 May 7;49(17):5547-5562. doi: 10.1039/d0dt00437e. Epub 2020 Apr 9.
5
Lu-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy.
Eur J Nucl Med Mol Imaging. 2019 Nov;46(12):2545-2557. doi: 10.1007/s00259-019-04434-0. Epub 2019 Aug 10.
8
Evaluation of In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen.
J Nucl Med. 2019 Mar;60(3):400-406. doi: 10.2967/jnumed.118.214403. Epub 2018 Sep 20.

本文引用的文献

2
Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy.
Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1280-92. doi: 10.1007/s00259-014-2713-y. Epub 2014 Feb 28.
5
PET imaging in prostate cancer: focus on prostate-specific membrane antigen.
Curr Top Med Chem. 2013;13(8):951-62. doi: 10.2174/1568026611313080008.
8
PSMA-targeted theranostic nanoplex for prostate cancer therapy.
ACS Nano. 2012 Sep 25;6(9):7752-7762. doi: 10.1021/nn301725w. Epub 2012 Aug 9.
9
Lutetium-labelled peptides for therapy of neuroendocrine tumours.
Eur J Nucl Med Mol Imaging. 2012 Feb;39 Suppl 1(Suppl 1):S103-12. doi: 10.1007/s00259-011-2039-y.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验