Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
Theranostics. 2022 Jan 1;12(1):232-259. doi: 10.7150/thno.62851. eCollection 2022.
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a "theranostic pair" imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
治疗诊断学是一种新兴的范例,它将成像和治疗结合起来,以实现患者治疗的个体化。在核医学中,这是通过使用放射性药物来实现的,这些放射性药物针对相同的分子靶点进行成像(使用发射的伽马射线)和放射性药物治疗(使用发射的β、α或俄歇电子粒子),用于治疗各种疾病,如癌症。如果治疗性放射性药物不能进行定量成像,可以使用“治疗诊断对”成像替代物来预测治疗性放射性药物的吸收剂量。然而,治疗诊断剂量学假设对映体在对映体中的药代动力学和生物分布是相同或非常相似的,这一假设仍然需要进一步验证,特别是对于许多治疗诊断对。在这篇综述中,我们考虑了同元素和不同元素的治疗诊断对,并试图确定是否存在可能导致治疗诊断剂量学中剂量外推不准确的因素,这些因素可能是放射性药物内在的(例如化学差异)或外在的(例如注射的每种放射性药物的量不同)。我们讨论了治疗诊断剂量学的基础,并介绍了常见的治疗诊断对及其在肿瘤学中的治疗应用。我们研究了可能导致放射性药物行为或定量成像准确性改变的一般因素。最后,我们试图确定是否有证据表明某些特定的对适合治疗诊断剂量学。我们表明,即使属于同一化学元素,也有许多内在和外在的因素可以显著改变放射性药物对的行为。需要进一步的研究来确定这些因素对治疗诊断剂量学估计和患者结果的影响,以及如何正确考虑这些因素。