Suppr超能文献

区间值神经网络方法在短期风速预测不确定性量化中的应用。

An Interval-Valued Neural Network Approach for Uncertainty Quantification in Short-Term Wind Speed Prediction.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2787-800. doi: 10.1109/TNNLS.2015.2396933. Epub 2015 Feb 26.

Abstract

We consider the task of performing prediction with neural networks (NNs) on the basis of uncertain input data expressed in the form of intervals. We aim at quantifying the uncertainty in the prediction arising from both the input data and the prediction model. A multilayer perceptron NN is trained to map interval-valued input data onto interval outputs, representing the prediction intervals (PIs) of the real target values. The NN training is performed by nondominated sorting genetic algorithm-II, so that the PIs are optimized both in terms of accuracy (coverage probability) and dimension (width). Demonstration of the proposed method is given in two case studies: 1) a synthetic case study, in which the data have been generated with a 5-min time frequency from an autoregressive moving average model with either Gaussian or Chi-squared innovation distribution and 2) a real case study, in which experimental data consist of wind speed measurements with a time step of 1 h. Comparisons are given with a crisp (single-valued) approach. The results show that the crisp approach is less reliable than the interval-valued input approach in terms of capturing the variability in input.

摘要

我们考虑在基于不确定输入数据的基础上,使用神经网络(NN)进行预测的任务,这些输入数据采用区间形式表示。我们旨在量化预测中的不确定性,这些不确定性既来自于输入数据,也来自于预测模型。训练一个多层感知器神经网络,以便将区间值输入数据映射到区间输出,代表真实目标值的预测区间(PIs)。通过非支配排序遗传算法-II 进行 NN 训练,从而可以在准确性(覆盖概率)和维度(宽度)方面对 PIs 进行优化。在两个案例研究中演示了所提出的方法:1)一个合成案例研究,其中数据是从具有高斯或卡方创新分布的自回归移动平均模型以 5 分钟的时间频率生成的,2)一个真实案例研究,其中实验数据由 1 小时时间步长的风速测量组成。与清晰(单值)方法进行了比较。结果表明,在捕捉输入的可变性方面,清晰方法不如区间值输入方法可靠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验