Suppr超能文献

细胞作为液体马达:机械敏感性源于肌动球蛋白皮层的集体动力学。

Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex.

作者信息

Étienne Jocelyn, Fouchard Jonathan, Mitrossilis Démosthène, Bufi Nathalie, Durand-Smet Pauline, Asnacios Atef

机构信息

Université Grenoble Alpes and CNRS, Laboratoire Interdisciplinaire de Physique, F-38000 Grenoble, France; and

Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2740-5. doi: 10.1073/pnas.1417113112. Epub 2015 Feb 17.

Abstract

Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force-velocity relationship.

摘要

活细胞会主动适应并对其周围环境的力学特性做出反应。除了生化机械转导外,有证据表明在整个细胞尺度上存在一种依赖肌球蛋白的对周围环境硬度的纯机械敏感性。通过使用肌动球蛋白皮层动力学的最小模型,我们表明肌球蛋白动力冲程与快速重塑的肌动蛋白网络之间的相互作用导致了力和细胞形状的调节,使其适应环境的硬度。研究发现,环境硬度的瞬时变化会触发肌动球蛋白皮层的内在机械反应。边缘处肌动蛋白聚合导致的皮层逆行流被证明受到肌球蛋白收缩性产生的应力调节,而这又以力依赖的方式调节细胞长度。该模型描述了细胞能够施加的最大力以及它们能够收缩的最大速度,这些都是通过实验测量得到的。发现这些极限情况与能量耗散现象相关,这些现象与整个肌肉收缩过程中发生的现象具有相同的性质。这种相似性解释了单个非肌肉细胞和整个肌肉收缩都遵循类似希尔力 - 速度关系这一事实。

相似文献

3
Principles of Actomyosin Regulation In Vivo.肌动球蛋白调控的活体原则
Trends Cell Biol. 2019 Feb;29(2):150-163. doi: 10.1016/j.tcb.2018.09.006. Epub 2018 Oct 29.
6
Acto-myosin based response to stiffness and rigidity sensing.肌球蛋白的机械反应与刚度和硬度感知。
Cell Adh Migr. 2011 Jan-Feb;5(1):16-9. doi: 10.4161/cam.5.1.13281. Epub 2011 Jan 1.

引用本文的文献

1
Form and function in biological filaments: a physicist's review.生物细丝的形态与功能:物理学家的综述
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
7
Active viscoelastic models for cell and tissue mechanics.用于细胞和组织力学的主动粘弹性模型。
R Soc Open Sci. 2024 Apr 24;11(4):231074. doi: 10.1098/rsos.231074. eCollection 2024 Apr.

本文引用的文献

3
Stress-enhanced gelation: a dynamic nonlinearity of elasticity.应力增强凝胶化:弹性的动态非线性。
Phys Rev Lett. 2013 Jan 4;110(1):018103. doi: 10.1103/PhysRevLett.110.018103. Epub 2013 Jan 3.
4
Analysis of turnover dynamics of the submembranous actin cortex.分析膜下肌动蛋白皮层的周转率动态。
Mol Biol Cell. 2013 Mar;24(6):757-67. doi: 10.1091/mbc.E12-06-0485. Epub 2013 Jan 23.
9
Rigidity sensing explained by active matter theory.活性物质理论解释刚性感知。
Biophys J. 2011 Sep 21;101(6):L33-5. doi: 10.1016/j.bpj.2011.08.023. Epub 2011 Sep 20.
10
Active multistage coarsening of actin networks driven by myosin motors.肌球蛋白马达驱动的肌动蛋白网络的主动多级粗化。
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验