Suppr超能文献

在活小鼠中,动态多面肌动球蛋白格子在胞吐作用过程中重塑微米级的弯曲膜。

Dynamic polyhedral actomyosin lattices remodel micron-scale curved membranes during exocytosis in live mice.

机构信息

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

Laboratory of Cell Structure and Dynamics, National Institute on Deafness and other Communication Disorders, NIH, Bethesda, MD, USA.

出版信息

Nat Cell Biol. 2019 Aug;21(8):933-939. doi: 10.1038/s41556-019-0365-7. Epub 2019 Jul 29.

Abstract

Actomyosin networks, the cell's major force production machineries, remodel cellular membranes during myriad dynamic processes by assembling into various architectures with distinct force generation properties. While linear and branched actomyosin architectures are well characterized in cell-culture and cell-free systems, it is not known how actin and myosin networks form and function to remodel membranes in complex three-dimensional mammalian tissues. Here, we use four-dimensional spinning-disc confocal microscopy with image deconvolution to acquire macromolecular-scale detail of dynamic actomyosin networks in exocrine glands of live mice. We address how actin and myosin organize around large membrane-bound secretory vesicles and generate the forces required to complete exocytosis. We find that actin and non-muscle myosin II (NMII) assemble into previously undescribed polyhedral-like lattices around the vesicle membrane. The NMII lattice comprises bipolar minifilaments as well as non-canonical three-legged configurations. Using photobleaching and pharmacological perturbations in vivo, we show that actomyosin contractility and actin polymerization together push on the underlying vesicle membrane to overcome the energy barrier and complete exocytosis. Our imaging approach thus unveils a force-generating actomyosin lattice that regulates secretion in the exocrine organs of live animals.

摘要

肌动球蛋白网络是细胞的主要力量产生机制,通过组装成具有不同产生力特性的各种结构,在无数动态过程中重塑细胞膜。虽然在线粒体和无细胞系统中已经很好地描述了线性和分支的肌动球蛋白结构,但尚不清楚肌动球蛋白网络如何形成和发挥作用,以重塑复杂的三维哺乳动物组织中的膜。在这里,我们使用带有图像反卷积的四维度旋转盘共聚焦显微镜,在活鼠的外分泌腺中获取动态肌动球蛋白网络的宏观尺度细节。我们研究了肌动球蛋白如何围绕大型膜结合的分泌泡进行组织,并产生完成胞吐作用所需的力。我们发现肌动蛋白和非肌肉肌球蛋白 II(NMII)在囊泡膜周围组装成以前未描述的多面体形晶格。NMII 晶格包括双极微丝以及非典型的三脚结构。通过体内光漂白和药理学扰动,我们表明肌动球蛋白收缩性和肌动蛋白聚合共同推动下的囊泡膜克服能量障碍并完成胞吐作用。因此,我们的成像方法揭示了一种产生力的肌动球蛋白晶格,它调节活体动物外分泌器官中的分泌。

相似文献

引用本文的文献

2
Inverse blebs operate as hydraulic pumps during mouse blastocyst formation.反转泡囊在小鼠囊胚形成过程中充当液压泵。
Nat Cell Biol. 2024 Oct;26(10):1669-1677. doi: 10.1038/s41556-024-01501-z. Epub 2024 Sep 11.
8
Multiphoton intravital microscopy of rodents.啮齿动物的多光子活体显微镜检查
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00168-w. Epub 2022 Nov 10.
9
What's past is prologue: FRAP keeps delivering 50 years later.往事为序章:FRAP 仍在续写 50 年后的辉煌。
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.
10
Non-muscle myosin II drives critical steps of nematocyst morphogenesis.非肌肉肌球蛋白II驱动刺丝囊形态发生的关键步骤。
iScience. 2023 Feb 28;26(3):106291. doi: 10.1016/j.isci.2023.106291. eCollection 2023 Mar 17.

本文引用的文献

2
The actin cortex at a glance.肌动蛋白皮质一览。
J Cell Sci. 2018 Jul 19;131(14):jcs186254. doi: 10.1242/jcs.186254.
3
Architecture shapes contractility in actomyosin networks.结构塑造肌动球蛋白网络的收缩性。
Curr Opin Cell Biol. 2018 Feb;50:79-85. doi: 10.1016/j.ceb.2018.01.015. Epub 2018 Feb 23.
6
Actin Rings of Power.有动力的肌动蛋白环。
Dev Cell. 2016 Jun 20;37(6):493-506. doi: 10.1016/j.devcel.2016.05.024.
8
Forcing cells into shape: the mechanics of actomyosin contractility.迫使细胞变形:肌动球蛋白收缩力的力学。
Nat Rev Mol Cell Biol. 2015 Aug;16(8):486-98. doi: 10.1038/nrm4012. Epub 2015 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验