Suppr超能文献

预测头颈癌肿瘤缩小情况的决策树:对自适应放疗的启示

Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

作者信息

Surucu Murat, Shah Karan K, Mescioglu Ibrahim, Roeske John C, Small William, Choi Mehee, Emami Bahman

机构信息

Department of Radiation Oncology, Loyola University Chicago, Maywood, IL, USA

Department of Radiation Oncology, Loyola University Chicago, Maywood, IL, USA.

出版信息

Technol Cancer Res Treat. 2016 Feb;15(1):139-45. doi: 10.1177/1533034615572638. Epub 2015 Mar 2.

Abstract

OBJECTIVE

To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters.

METHODS

Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented.

RESULTS

The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%.

CONCLUSIONS

There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources.

摘要

目的

利用治疗前的临床和病理参数,构建预测头颈部(H&N)癌患者肿瘤体积缩小情况的决策树。

方法

回顾性分析48例接受确定性同步放化疗的鼻咽癌、口咽癌、口腔癌或下咽癌鳞状细胞癌患者。这些患者在中位剂量37.8 Gy时进行重新扫描,并重新规划以考虑解剖结构变化。计算从初始计算机断层扫描(CT)到重新扫描时大体肿瘤体积(GTV)的变化百分比(%GTVΔ)。生成两个决策树,将原发灶和淋巴结体积的%GTVΔ与14个特征相关联,包括年龄、性别、卡诺夫斯基功能状态(KPS)、部位、人乳头瘤病毒(HPV)状态、肿瘤分级、原发肿瘤生长模式(内生性/外生性)、肿瘤/淋巴结/分组分期、化疗方案以及初始CT扫描中的原发灶、淋巴结和总GTV体积。实施C4.5决策树归纳算法。

结果

原发灶、淋巴结和总GTV的中位%GTVΔ分别为26.8%、43.0%和31.2%。化疗类型、年龄、原发肿瘤生长模式、部位、KPS和HPV状态是原发灶%GTVΔ决策树最具预测性的参数,而对于淋巴结%GTVΔ,KPS、部位、年龄、原发肿瘤生长模式、初始原发灶GTV和总GTV体积具有预测性。两个决策树的准确率均为88%。

结论

在H&N放化疗过程中,原发灶和淋巴结肿瘤体积可能会发生显著变化。考虑到所提出的决策树,放射肿瘤学家可以选择预测%GTVΔ较高的患者,理论上这些患者将从自适应放疗中获益最大,以便更好地利用有限的临床资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验