1] Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany [2] Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e. V., D-01314 Dresden, Germany.
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e. V., D-01314 Dresden, Germany.
Nat Commun. 2015 Mar 3;6:6409. doi: 10.1038/ncomms7409.
The gyrotropic rotation around the equilibrium position constitutes the fundamental excitation of magnetic vortices in nanostructures. The frequency of this mode varies with material and sample geometry, but is independent of the vortex handedness and its core direction. Here, we demonstrate that this degeneracy is lifted in a spin-torque oscillator containing two vortices stacked on top of each other. When driven by spin-polarized currents, such devices exhibit a set of dynamic modes with discretely split frequencies, each corresponding to a specific combination of vorticities and relative core polarities. The fine splitting occurs even in the absence of external fields, demonstrating that such devices can function as zero-field, multi-channel, nano-oscillators for communication technologies. It also facilitates the detection of the relative core polarization and allows for the eight non-degenerate configurations to be distinguished electrically, which may enable the design of multi-state memory devices based on double-vortex nanopillars.
在纳米结构中,绕平衡位置的旋轨转动构成了磁涡旋的基本激发模式。该模式的频率随材料和样品几何形状而变化,但与涡旋手性及其核心方向无关。在这里,我们证明了这种简并性在包含两个相互堆叠的涡旋的自旋扭矩振荡器中被解除。当由自旋极化电流驱动时,这种器件表现出一组具有离散分裂频率的动态模式,每个模式对应于特定的涡度和相对核心极性的组合。即使在没有外部磁场的情况下,也会发生精细分裂,这表明这种器件可以用作零场、多通道纳米振荡器,用于通信技术。它还便于检测相对核心极化,并允许通过电区分出 8 个非简并配置,这可能会使基于双涡旋纳米柱的多状态存储器件的设计成为可能。