Zheng Hao, Rathouz Paul J
Department of Statistics, University of Wisconsin-Madison, Madison, USA.
Behav Genet. 2015 Jul;45(4):467-79. doi: 10.1007/s10519-015-9707-9. Epub 2015 Mar 4.
For quantitative behavior genetic (e.g., twin) studies, Purcell proposed a novel model for testing gene-by-measured environment (GxM) interactions while accounting for gene-by-environment correlation. Rathouz et al. expanded this model into a broader class of non-linear biometric models for quantifying and testing such interactions. In this work, we propose a novel factorization of the likelihood for this class of models, and adopt numerical integration techniques to achieve model estimation, especially for those without close-form likelihood. The validity of our procedures is established through numerical simulation studies. The new procedures are illustrated in a twin study analysis of the moderating effect of birth weight on the genetic influences on childhood anxiety. A second example is given in an online appendix. Both the extant GxM models and the new non-linear models critically assume normality of all structural components, which implies continuous, but not normal, manifest response variables.
对于定量行为遗传学(如双胞胎)研究,珀塞尔提出了一种新颖的模型,用于在考虑基因与环境相关性的同时,检验基因与测量环境(GxM)的相互作用。拉索兹等人将此模型扩展为更广泛的一类非线性生物统计学模型,用于量化和检验此类相互作用。在这项工作中,我们针对这类模型提出了一种新颖的似然分解方法,并采用数值积分技术来实现模型估计,特别是对于那些没有闭式似然的模型。我们通过数值模拟研究确定了我们方法的有效性。新方法在一项双胞胎研究分析中得到了说明,该分析研究了出生体重对童年焦虑遗传影响的调节作用。第二个例子在在线附录中给出。现有的GxM模型和新的非线性模型都严格假设所有结构成分呈正态分布,这意味着表现型反应变量是连续的,但不一定是正态的。