Neymotin Samuel A, McDougal Robert A, Sherif Mohamed A, Fall Christopher P, Hines Michael L, Lytton William W
Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, 11203, and Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, U.S.A.
Neural Comput. 2015 Apr;27(4):898-924. doi: 10.1162/NECO_a_00712. Epub 2015 Mar 3.
Calcium (Ca²⁺) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron's second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP₃), diffusible Ca²⁺, IP₃ receptors (IP₃Rs), endoplasmic reticulum (ER) Ca²⁺ leak, and ER pump (SERCA) on ER. Ca²⁺ is released from ER stores via IP₃Rs upon binding of IP₃ and Ca²⁺. This results in Ca²⁺-induced-Ca²⁺-release (CICR) and increases Ca²⁺ spread. At least two modes of Ca²⁺ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell and a pseudo-saltatory model where Ca²⁺ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP₃R distribution: (1) continuous homogeneous ER, (2) hotspots with increased IP₃R density (IP₃R hotspots), and (3) areas of increased ER density (ER stacks). All three modes produced Ca²⁺ waves with velocities similar to those measured in vitro (approximately 50-90 μm /sec). Continuous ER showed high sensitivity to IP₃R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP₃R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca²⁺ substantially increased wave speed. An extended electrochemical model, including voltage-gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca²⁺ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP₃Rs and SERCA could allow modulation of Ca²⁺ wave propagation in diseases where Ca²⁺ dysregulation has been implicated.
钙(Ca²⁺)波是神经元电信号传导的一种补充,构成了神经元第二信使系统的关键部分。我们开发了一个顶端树突的反应扩散模型,该模型包含可扩散的肌醇三磷酸(IP₃)、可扩散的Ca²⁺、IP₃受体(IP₃Rs)、内质网(ER)Ca²⁺泄漏以及内质网上的内质网泵(SERCA)。当IP₃与Ca²⁺结合后,Ca²⁺通过IP₃Rs从内质网储存中释放出来。这导致钙诱导钙释放(CICR)并增加Ca²⁺的扩散。至少有两种Ca²⁺波传播模式被提出:一种基于细胞内内质网假定相对均匀性的连续模式,以及一种伪跳跃模型,其中Ca²⁺再生发生在离散点之间,并在它们之间扩散。我们比较了三种假设的IP₃R分布模式的影响:(1)连续均匀的内质网,(2)IP₃R密度增加的热点区域(IP₃R热点),以及(3)内质网密度增加的区域(内质网堆叠)。所有这三种模式产生的Ca²⁺波速度与体外测量的速度相似(约50 - 90μm/秒)。连续内质网对IP₃R密度增加表现出高敏感性,起始时间缩短且速度增加。SERCA密度增加则产生相反的效果。这些测量对IP₃R热点和堆叠的密度及间距变化很敏感。增加Ca²⁺的表观扩散系数会显著提高波速。一个扩展电化学模型,包括电压门控钙通道和AMPA突触,表明通过AMPA刺激进行的膜引发会增强随后的Ca²⁺波幅度和持续时间。我们的模型表明,在涉及Ca²⁺调节异常的疾病中,对IP₃Rs和SERCA进行药物靶向可能允许调节Ca²⁺波的传播。