Suppr超能文献

神经元钙波传播随内质网参数变化而变化:一个计算机模型

Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model.

作者信息

Neymotin Samuel A, McDougal Robert A, Sherif Mohamed A, Fall Christopher P, Hines Michael L, Lytton William W

机构信息

Department of Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, 11203, and Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, U.S.A.

出版信息

Neural Comput. 2015 Apr;27(4):898-924. doi: 10.1162/NECO_a_00712. Epub 2015 Mar 3.

Abstract

Calcium (Ca²⁺) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron's second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP₃), diffusible Ca²⁺, IP₃ receptors (IP₃Rs), endoplasmic reticulum (ER) Ca²⁺ leak, and ER pump (SERCA) on ER. Ca²⁺ is released from ER stores via IP₃Rs upon binding of IP₃ and Ca²⁺. This results in Ca²⁺-induced-Ca²⁺-release (CICR) and increases Ca²⁺ spread. At least two modes of Ca²⁺ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell and a pseudo-saltatory model where Ca²⁺ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP₃R distribution: (1) continuous homogeneous ER, (2) hotspots with increased IP₃R density (IP₃R hotspots), and (3) areas of increased ER density (ER stacks). All three modes produced Ca²⁺ waves with velocities similar to those measured in vitro (approximately 50-90 μm /sec). Continuous ER showed high sensitivity to IP₃R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP₃R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca²⁺ substantially increased wave speed. An extended electrochemical model, including voltage-gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca²⁺ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP₃Rs and SERCA could allow modulation of Ca²⁺ wave propagation in diseases where Ca²⁺ dysregulation has been implicated.

摘要

钙(Ca²⁺)波是神经元电信号传导的一种补充,构成了神经元第二信使系统的关键部分。我们开发了一个顶端树突的反应扩散模型,该模型包含可扩散的肌醇三磷酸(IP₃)、可扩散的Ca²⁺、IP₃受体(IP₃Rs)、内质网(ER)Ca²⁺泄漏以及内质网上的内质网泵(SERCA)。当IP₃与Ca²⁺结合后,Ca²⁺通过IP₃Rs从内质网储存中释放出来。这导致钙诱导钙释放(CICR)并增加Ca²⁺的扩散。至少有两种Ca²⁺波传播模式被提出:一种基于细胞内内质网假定相对均匀性的连续模式,以及一种伪跳跃模型,其中Ca²⁺再生发生在离散点之间,并在它们之间扩散。我们比较了三种假设的IP₃R分布模式的影响:(1)连续均匀的内质网,(2)IP₃R密度增加的热点区域(IP₃R热点),以及(3)内质网密度增加的区域(内质网堆叠)。所有这三种模式产生的Ca²⁺波速度与体外测量的速度相似(约50 - 90μm/秒)。连续内质网对IP₃R密度增加表现出高敏感性,起始时间缩短且速度增加。SERCA密度增加则产生相反的效果。这些测量对IP₃R热点和堆叠的密度及间距变化很敏感。增加Ca²⁺的表观扩散系数会显著提高波速。一个扩展电化学模型,包括电压门控钙通道和AMPA突触,表明通过AMPA刺激进行的膜引发会增强随后的Ca²⁺波幅度和持续时间。我们的模型表明,在涉及Ca²⁺调节异常的疾病中,对IP₃Rs和SERCA进行药物靶向可能允许调节Ca²⁺波的传播。

相似文献

1
Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model.
Neural Comput. 2015 Apr;27(4):898-924. doi: 10.1162/NECO_a_00712. Epub 2015 Mar 3.
3
Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.
Neuroscience. 2016 Mar 1;316:344-66. doi: 10.1016/j.neuroscience.2015.12.043. Epub 2015 Dec 31.
5
Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+ waves initiated by IP3 than by Ca2+.
Biophys J. 2003 Mar;84(3):1580-90. doi: 10.1016/S0006-3495(03)74968-6.
7
Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release.
J Neurosci. 2009 May 20;29(20):6568-79. doi: 10.1523/JNEUROSCI.0181-09.2009.
8
Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves.
J Physiol. 2021 Jul;599(13):3267-3278. doi: 10.1113/JP281579. Epub 2021 Jun 5.
9
Endoplasmic reticulum Ca(2+) homeostasis and neuronal death.
J Cell Mol Med. 2003 Oct-Dec;7(4):351-61. doi: 10.1111/j.1582-4934.2003.tb00238.x.
10
The endoplasmic reticulum and neuronal calcium signalling.
Cell Calcium. 2002 Nov-Dec;32(5-6):393-404. doi: 10.1016/s0143416002001896.

引用本文的文献

1
Vasodilatory Effect of -Butanol Extract from L. and Its Mechanism.
Plants (Basel). 2025 Apr 1;14(7):1095. doi: 10.3390/plants14071095.
3
Computational neurosciences and quantitative systems pharmacology: a powerful combination for supporting drug development in neurodegenerative diseases.
J Pharmacokinet Pharmacodyn. 2024 Oct;51(5):563-573. doi: 10.1007/s10928-023-09876-6. Epub 2023 Jul 28.
4
Efficient Simulation of 3D Reaction-Diffusion in Models of Neurons and Networks.
Front Neuroinform. 2022 May 17;16:847108. doi: 10.3389/fninf.2022.847108. eCollection 2022.
5
Compartment-specific tuning of dendritic feature selectivity by intracellular Ca release.
Science. 2022 Mar 18;375(6586):eabm1670. doi: 10.1126/science.abm1670.
6
Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation.
Int J Mol Sci. 2020 May 9;21(9):3351. doi: 10.3390/ijms21093351.
7
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis.
Cells. 2019 Oct 10;8(10):1232. doi: 10.3390/cells8101232.
8
Load balancing for multi-threaded PDES of stochastic reaction-diffusion in neurons.
J Simul. 2017 Aug;11(3):267-284. doi: 10.1057/s41273-016-0033-x. Epub 2016 Oct 25.
9
Parallel Stochastic Discrete Event Simulation of Calcium Dynamics in Neuron.
IEEE/ACM Trans Comput Biol Bioinform. 2019 May-Jun;16(3):1007-1019. doi: 10.1109/TCBB.2017.2756930. Epub 2017 Sep 26.
10
Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons.
ACM Trans Model Comput Simul. 2017 Jul;27(2). doi: 10.1145/2987373.

本文引用的文献

1
Multiscale modeling for clinical translation in neuropsychiatric disease.
J Comput Surg. 2014;1. doi: 10.1186/2194-3990-1-7. Epub 2014 Mar 3.
2
Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.
Neuroscience. 2016 Mar 1;316:344-66. doi: 10.1016/j.neuroscience.2015.12.043. Epub 2015 Dec 31.
3
Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease.
Front Comput Neurosci. 2014 Apr 3;8:39. doi: 10.3389/fncom.2014.00039. eCollection 2014.
4
Modeling molecular pathways of neuronal ischemia.
Prog Mol Biol Transl Sci. 2014;123:249-75. doi: 10.1016/B978-0-12-397897-4.00014-0.
5
Reaction-diffusion in the NEURON simulator.
Front Neuroinform. 2013 Nov 15;7:28. doi: 10.3389/fninf.2013.00028. eCollection 2013.
6
Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.
PLoS One. 2013 Oct 18;8(10):e76285. doi: 10.1371/journal.pone.0076285. eCollection 2013.
7
Water-tight membranes from neuronal morphology files.
J Neurosci Methods. 2013 Nov 15;220(2):167-78. doi: 10.1016/j.jneumeth.2013.09.011. Epub 2013 Sep 30.
8
Approaches and tools for modeling signaling pathways and calcium dynamics in neurons.
J Neurosci Methods. 2013 Nov 15;220(2):131-40. doi: 10.1016/j.jneumeth.2013.05.008. Epub 2013 Jun 3.
9
Control of GABA Release at Mossy Fiber-CA3 Connections in the Developing Hippocampus.
Front Synaptic Neurosci. 2010 Feb 22;2:1. doi: 10.3389/neuro.19.001.2010. eCollection 2010.
10
IP(3) receptors: toward understanding their activation.
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a004010. doi: 10.1101/cshperspect.a004010. Epub 2010 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验