Kowerko Danny, König Sebastian L B, Skilandat Miriam, Kruschel Daniela, Hadzic Mélodie C A S, Cardo Lucia, Sigel Roland K O
Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3403-8. doi: 10.1073/pnas.1322759112. Epub 2015 Mar 3.
RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.
通常认为,RNA在达到其功能折叠状态(即自由能景观中的全局最小值)之前会经历一系列连续的折叠步骤。然而,越来越多的证据表明,几种功能构象常常共存,对应于折叠景观中的多个(局部)最小值。在这里,我们使用自我剪接核酶的5'-外显子-内含子识别双链体作为模型系统,来研究Mg(2+)和Ca(2+)对RNA三级结构形成的影响。体相和单分子光谱表明,接近生理浓度的M(2+)强烈促进链间缔合。此外,M(2+)的存在导致明显的动力学异质性,表明存在多个对接和未对接的RNA构象。发现在饱和M(2+)浓度下异质性降低。利用核磁共振,我们确定了特定的Mg(2+)结合口袋,并量化了它们对Mg(2+)的亲和力。Mg(2+)脉冲实验表明,M(2+)交换发生在秒级时间尺度上。据我们所知,核磁共振和单分子Förster共振能量转移的这种前所未有的结合首次表明,在接近生理浓度的M(2+)下,崎岖的自由能景观与特定M(2+)结合位点的不完全占据相吻合。因此,单分子实验中经常遇到的核酸折叠中的非常规动力学可能源于M(2+)结合位点占据情况不同的一系列构象。