Zhang Zailei, Ji Yongjun, Li Jing, Tan Qiangqiang, Zhong Ziyi, Su Fabing
†State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
‡Institute of Chemical Engineering and Sciences, A*star, 1 Pesek Road, Jurong Island, Singapore 627833.
ACS Appl Mater Interfaces. 2015 Mar 25;7(11):6300-9. doi: 10.1021/acsami.5b00617. Epub 2015 Mar 11.
The yolk-shell hollow structure of transition metal oxides has many applications in lithium-ion batteries and catalysis. However, it is still a big challenge to fabricate uniform hollow microspheres with the yolk bishell structure for mixed transition metal oxides and their supported or embedded forms in carbon microspheres with superior lithium storage properties. Here we report a new approach to the synthesis of manganese cobalt iron oxides/carbon (MnxCo1-xFe2O4 (0 ≤ x ≤ 1)) microspheres through carbonization of Mn(2+)Co(2+)Fe(3+)/carbonaceous microspheres in N2, which can be directly applied as high-performance anodes with a long cycle life for lithium storage. Furthermore, uniform hollow microspheres with a MnxCo1-xFe2O4 yolk bishell structure are obtained by annealing the above MnxCo1-xFe2O4/carbon microspheres in air. As demonstrated, these anodes exhibited a high reversible capacity of 498.3 mAh g(-1) even after 500 cycles for Mn0.5Co0.5Fe2O4/carbon microspheres and 774.6 mAh g(-1) over 100 cycles for Mn0.5Co0.5Fe2O4 yolk bishell hollow microspheres at the current density of 200 mA g(-1). The present strategy not only develops a high-performance anode material with long cycle life for lithium-ion batteries but also demonstrates a novel and feasible technique for designed synthesis of transition metal oxides yolk bishell hollow microspheres with various applications.
过渡金属氧化物的蛋黄壳空心结构在锂离子电池和催化领域有诸多应用。然而,制备具有蛋黄双壳结构的均匀空心微球用于混合过渡金属氧化物及其在具有优异锂存储性能的碳微球中的负载或嵌入形式,仍然是一个巨大的挑战。在此,我们报道了一种通过在氮气中将Mn(2+)Co(2+)Fe(3+)/碳质微球碳化来合成锰钴铁氧化物/碳(MnxCo1-xFe2O4 (0 ≤ x ≤ 1))微球的新方法,该微球可直接用作具有长循环寿命的高性能锂存储负极。此外,通过在空气中对上述MnxCo1-xFe2O4/碳微球进行退火,可获得具有MnxCo1-xFe2O4蛋黄双壳结构的均匀空心微球。结果表明,在200 mA g(-1)的电流密度下,对于Mn0.5Co0.5Fe2O4/碳微球,即使经过500次循环,这些负极仍表现出498.3 mAh g(-1)的高可逆容量;对于Mn0.5Co0.5Fe2O4蛋黄双壳空心微球,在100次循环后可逆容量为774.6 mAh g(-1)。本策略不仅开发了一种用于锂离子电池的具有长循环寿命的高性能负极材料,还展示了一种用于设计合成具有各种应用的过渡金属氧化物蛋黄双壳空心微球的新颖且可行的技术。