Prakash Priyanka, Hancock John F, Gorfe Alemayehu A
Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030.
Proteins. 2015 May;83(5):898-909. doi: 10.1002/prot.24786. Epub 2015 Mar 25.
We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.
我们已使用基于探针的分子动力学(pMD)模拟来寻找治疗上高度相关的致癌性K-Ras G12D表面上的相互作用热点。将基于探针的查询与基于系综的口袋识别方案以及对现有Ras-配体复合物的分析相结合,我们表明:(i)pMD是一种用于识别结合位点的强大且具有成本效益的策略;(ii)先前报道的所有四个配体结合位点都适用于基于结构的配体设计;(iii)在某些情况下,探针结合和构型空间的扩展采样能够实现口袋扩展并增加位点识别的可能性。此外,通过将非口袋状区域中的热点分布与已知的蛋白质和膜相互作用界面进行比较,我们提出pMD有潜力预测负责蛋白质-生物分子相互作用的表面区域。这些观察结果对未来的药物设计工作具有重要意义,并将有助于寻找在细胞环境中负责Ras与其他生物分子之间拟议的瞬时寡聚化或相互作用的潜在界面。