Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
In the domain of computer-aided drug design, achieving precise and accurate estimates of ligand-protein binding is paramount in the context of screening extensive drug libraries and performing ligand optimization. A fundamental aspect of the SILCS (site identification by ligand competitive saturation) methodology lies in the generation of comprehensive 3D free-energy functional group affinity maps (FragMaps), encompassing the entirety of the target molecule structure. These FragMaps offer an intricate landscape of functional group affinities across the protein, bilayer, or RNA, acting as the basis for subsequent SILCS-Monte Carlo (MC) simulations wherein ligands are docked to the target molecule. To augment the efficiency and breadth of ligand sampling capabilities, we implemented an improved SILCS-MC methodology. By harnessing the parallel computing capability of GPUs, our approach facilitates concurrent calculations over multiple ligands and binding sites, markedly enhancing the computational efficiency. Moreover, the integration of a genetic algorithm (GA) with MC allows us to employ an evolutionary approach to perform ligand sampling, assuring enhanced convergence characteristics. In addition, the potential utility of parallel tempering (PT) to improve sampling was investigated. Implementation of SILCS-MC on GPU architecture is shown to accelerate the speed of SILCS-MC calculations by over 2-orders of magnitude. Use of GA and PT yield improvements over Markov-chain MC, increasing the precision of the resultant docked orientations and binding free energies, though the extent of improvements is relatively small. Accordingly, significant improvements in speed are obtained through the GPU implementation with minor improvements in the precision of the docking obtained via the tested GA and PT algorithms.
在计算机辅助药物设计领域,在筛选广泛的药物库和进行配体优化时,实现对配体-蛋白结合的精确和准确估计至关重要。SILCS(通过配体竞争饱和进行位点鉴定)方法的一个基本方面在于生成全面的 3D 自由能功能组亲和力图谱(FragMaps),涵盖目标分子结构的全部。这些 FragMaps 提供了蛋白质、双层或 RNA 上功能组亲和力的复杂景观,作为随后进行 SILCS-Monte Carlo(MC)模拟的基础,其中配体被对接至目标分子。为了提高配体采样能力的效率和广度,我们实施了改进的 SILCS-MC 方法。通过利用 GPU 的并行计算能力,我们的方法能够同时对多个配体和结合位点进行计算,显著提高了计算效率。此外,将遗传算法(GA)与 MC 集成,使我们能够采用进化方法进行配体采样,确保了更好的收敛特性。此外,还研究了并行温度(PT)在提高采样方面的潜在效用。在 GPU 架构上实施 SILCS-MC 可将 SILCS-MC 计算的速度提高 2 个以上数量级。使用 GA 和 PT 可以提高 Markov-chain MC 的精度,增加所得对接方向和结合自由能的精度,尽管改进的程度相对较小。因此,通过 GPU 实现可获得显著的速度改进,同时通过测试的 GA 和 PT 算法在对接中获得了较小的精度改进。