Suppr超能文献

出行活动和城市化对环境氮氧化物暴露及暴露差异的影响。

Impacts of travel activity and urbanicity on exposures to ambient oxides of nitrogen and on exposure disparities.

作者信息

Gurram Sashikanth, Stuart Amy Lynette, Pinjari Abdul Rawoof

机构信息

Department of Civil and Environmental Engineering, University of South Florida, Tampa, USA.

Department of Environmental and Occupational Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL 33612 USA ; Department of Civil and Environmental Engineering, University of South Florida, Tampa, USA ; School of Population Health, University of Western Australia, Crawley, Australia.

出版信息

Air Qual Atmos Health. 2015;8(1):97-114. doi: 10.1007/s11869-014-0275-6. Epub 2014 Jul 10.

Abstract

Daily exposures to ambient oxides of nitrogen were estimated here for residents of Hillsborough County, FL. The 2009 National Household Travel Survey provided geocoded data on fixed activity locations during each person-day sampled. Routes between activity locations were calculated from transportation network data, assuming the quickest travel path. To estimate daily exposure concentrations for each person-day, the exposure locations were matched with diurnally and spatially varying ambient pollutant concentrations derived from CALPUFF dispersion model results. The social distribution of exposures was analyzed by comparing frequency distributions of grouped daily exposure concentrations and by regression modeling. To investigate exposure error, the activity-based exposure estimates were also compared with estimates derived using residence location alone. The mean daily activity-based exposure concentration for the study sample was 17 μg/m, with values for individual person-day records ranging from 7.0 to 43 μg/m. The highest mean exposure concentrations were found for the following groups: black (20 μg/m), below poverty (18 μg/m), and urban residence location (22 μg/m). Urban versus rural residence was associated with the largest increase in exposure concentration in the regression (8.3 μg/m). Time in nonresidential activities, including travel, was associated with an increase of 0.2 μg/m per hour. Time spent travelling and at nonresidential locations contributed an average of 6 and 24 %, respectively, to the daily estimate. A mean error of 3.6 %, with range from -64 to 58 %, was found to result from using residence location alone. Exposure error was highest for those who travel most, but lowest for the sociodemographic subgroups with higher mean exposure concentrations (including blacks and those from below poverty households). This work indicates the importance of urbanicity to social disparities in activity-based air pollution exposures. It also suggests that exposure error due to using residence location may be smaller for more exposed groups.

摘要

本文估算了佛罗里达州希尔斯伯勒县居民每日接触环境氮氧化物的情况。2009年全国家庭旅行调查提供了每个人采样日固定活动地点的地理编码数据。活动地点之间的路线是根据交通网络数据计算得出的,假设为最快的出行路径。为了估算每个人采样日的每日接触浓度,将接触地点与源自CALPUFF扩散模型结果的昼夜和空间变化的环境污染物浓度进行匹配。通过比较分组每日接触浓度的频率分布和回归建模来分析接触的社会分布情况。为了调查接触误差,还将基于活动的接触估算值与仅使用居住地点得出的估算值进行比较。研究样本基于活动的平均每日接触浓度为17μg/m³,个人采样日记录的值范围为7.0至43μg/m³。以下群体的平均接触浓度最高:黑人(20μg/m³)、贫困线以下人群(18μg/m³)和城市居住地点人群(22μg/m³)。在回归分析中,城市与农村居住情况与接触浓度的最大增幅相关(8.3μg/m³)。非居住活动(包括出行)的时间与每小时增加0.2μg/m³相关。出行时间和在非居住地点花费的时间分别对每日估算值平均贡献6%和24%。发现仅使用居住地点会导致平均误差为3.6%,范围从-64%至58%。出行最多的人接触误差最高,但平均接触浓度较高的社会人口亚组(包括黑人和贫困线以下家庭的人)接触误差最低。这项工作表明城市性对基于活动的空气污染接触中的社会差异具有重要意义。它还表明,对于接触更多的群体,使用居住地点导致的接触误差可能较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/4338342/cd5fd4b7764e/11869_2014_275_Fig1_HTML.jpg

相似文献

1
Impacts of travel activity and urbanicity on exposures to ambient oxides of nitrogen and on exposure disparities.
Air Qual Atmos Health. 2015;8(1):97-114. doi: 10.1007/s11869-014-0275-6. Epub 2014 Jul 10.
4
A population exposure model for particulate matter: case study results for PM(2.5) in Philadelphia, PA.
J Expo Anal Environ Epidemiol. 2001 Nov-Dec;11(6):470-89. doi: 10.1038/sj.jea.7500188.
6
Personal and ambient exposures to air toxics in Camden, New Jersey.
Res Rep Health Eff Inst. 2011 Aug(160):3-127; discussion 129-51.
7
Spatiotemporal distributions of ambient oxides of nitrogen, with implications for exposure inequality and urban design.
J Air Waste Manag Assoc. 2013 Aug;63(8):943-55. doi: 10.1080/10962247.2013.800168.
9
Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution.
Sci Total Environ. 2014 Apr 1;476-477:378-86. doi: 10.1016/j.scitotenv.2014.01.025. Epub 2014 Jan 30.

引用本文的文献

1
Assessment of air pollution and air quality perception mismatch using mobility-based real-time exposure.
PLoS One. 2024 Feb 27;19(2):e0294605. doi: 10.1371/journal.pone.0294605. eCollection 2024.
2
Local exposure misclassification in national models: relationships with urban infrastructure and demographics.
J Expo Sci Environ Epidemiol. 2024 Sep;34(5):761-769. doi: 10.1038/s41370-023-00624-z. Epub 2023 Dec 22.
3
The influence of outdoor PM concentration at workplace on nonaccidental mortality estimates in a Canadian census-based cohort.
Environ Epidemiol. 2021 Dec 3;5(6):e180. doi: 10.1097/EE9.0000000000000180. eCollection 2021 Dec.
4
Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA.
Int J Environ Res Public Health. 2021 Jun 29;18(13):6982. doi: 10.3390/ijerph18136982.
7
STHAM: an agent based model for simulating human exposure across high resolution spatiotemporal domains.
J Expo Sci Environ Epidemiol. 2020 May;30(3):459-468. doi: 10.1038/s41370-020-0216-4. Epub 2020 Mar 9.
8
Evaluation of daily time spent in transportation and traffic-influenced microenvironments by urban Canadians.
Air Qual Atmos Health. 2018;11(2):209-220. doi: 10.1007/s11869-017-0532-6. Epub 2017 Nov 30.
10
Urban Form, Air Pollution, and Health.
Curr Environ Health Rep. 2017 Dec;4(4):491-503. doi: 10.1007/s40572-017-0167-7.

本文引用的文献

1
National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.
PLoS One. 2014 Apr 15;9(4):e94431. doi: 10.1371/journal.pone.0094431. eCollection 2014.
3
Nitrogen dioxide and mortality: review and meta-analysis of long-term studies.
Eur Respir J. 2014 Sep;44(3):744-53. doi: 10.1183/09031936.00114713. Epub 2014 Feb 20.
4
Implementation and validation of a modeling framework to assess personal exposure to black carbon.
Environ Int. 2014 Jan;62:64-71. doi: 10.1016/j.envint.2013.10.003. Epub 2013 Oct 25.
5
Spatiotemporal distributions of ambient oxides of nitrogen, with implications for exposure inequality and urban design.
J Air Waste Manag Assoc. 2013 Aug;63(8):943-55. doi: 10.1080/10962247.2013.800168.
6
Gestational diabetes and preeclampsia in association with air pollution at levels below current air quality guidelines.
Environ Health Perspect. 2013 Apr;121(4):488-93. doi: 10.1289/ehp.1205736. Epub 2013 Jan 16.
7
Air pollution and health risks due to vehicle traffic.
Sci Total Environ. 2013 Apr 15;450-451:307-16. doi: 10.1016/j.scitotenv.2013.01.074.
8
Improving estimates of air pollution exposure through ubiquitous sensing technologies.
Environ Pollut. 2013 May;176:92-9. doi: 10.1016/j.envpol.2012.12.032. Epub 2013 Feb 13.
9
Integrated health impact assessment of travel behaviour: model exploration and application to a fuel price increase.
Environ Int. 2013 Jan;51:45-58. doi: 10.1016/j.envint.2012.10.005. Epub 2012 Nov 13.
10
Confounding and exposure measurement error in air pollution epidemiology.
Air Qual Atmos Health. 2012 Jun;5(2):203-216. doi: 10.1007/s11869-011-0140-9. Epub 2011 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验