Suppr超能文献

空气污染流行病学中的混杂因素与暴露测量误差。

Confounding and exposure measurement error in air pollution epidemiology.

作者信息

Sheppard Lianne, Burnett Richard T, Szpiro Adam A, Kim Sun-Young, Jerrett Michael, Pope C Arden, Brunekreef Bert

出版信息

Air Qual Atmos Health. 2012 Jun;5(2):203-216. doi: 10.1007/s11869-011-0140-9. Epub 2011 Mar 23.

Abstract

Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains.

摘要

空气污染流行病学研究可能会受到一些特定形式的混杂因素和暴露测量误差的影响。本论文主要在队列研究的框架内讨论这些问题。在空气污染对健康影响的研究中,评估潜在的混杂因素至关重要。长期暴露于环境空气污染与死亡率之间的关联已通过队列研究进行了调查,在这些研究中,对受试者的生命状况进行了长期跟踪。在这类研究中,控制个体层面的混杂因素(如吸烟)很重要,控制区域层面的混杂因素(如邻里社会经济地位)也同样重要。此外,生存数据中可能存在空间依赖性,需要加以解决。这些问题将通过美国癌症协会癌症预防II队列进行说明。暴露测量误差在流行病学中是一个挑战,因为当分析中使用的测量或预测暴露与潜在的真实暴露不同时,对健康影响的推断可能会出现错误。由于成本和可行性的原因,空气污染流行病学很少使用个人暴露测量。空气污染流行病学中的暴露测量误差有多种主要形式,时间序列研究和队列研究中的形式有所不同。本文将对这些挑战进行综述,并针对这两个研究领域讨论一些建议的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验