Suppr超能文献

噬菌体λ:早期先驱且仍具相关性。

Bacteriophage lambda: Early pioneer and still relevant.

作者信息

Casjens Sherwood R, Hendrix Roger W

机构信息

Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Virology. 2015 May;479-480:310-30. doi: 10.1016/j.virol.2015.02.010. Epub 2015 Mar 3.

Abstract

Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.

摘要

在20世纪50年代中期到80年代中期的黄金时代开展的关于λ噬菌体的分子遗传学研究,对于我们当前理解基因表达调控、DNA病毒组装以及溶原性的分子本质等复杂精巧的机制至关重要。具有讽刺意味的是,分子克隆技术的发展很大程度上是由λ噬菌体研究人员推动的,这使得许多噬菌体研究人员能够将精力转向其他生物系统。尽管如此,自那时以来,对λ噬菌体及其相关噬菌体的持续研究不断带来重要的新见解。在这篇综述中,我们讲述一些相关的早期历史,并描述在理解λ噬菌体生命周期分子生物学方面的最新进展。

相似文献

1
Bacteriophage lambda: Early pioneer and still relevant.
Virology. 2015 May;479-480:310-30. doi: 10.1016/j.virol.2015.02.010. Epub 2015 Mar 3.
2
The impact of phage lambda: from restriction to recombineering.
Biochem Soc Trans. 2006 Apr;34(Pt 2):203-7. doi: 10.1042/BST20060203.
3
Bacteriophage lambda: transactivation, positive control and other odd findings.
Bioessays. 1993 Apr;15(4):285-9. doi: 10.1002/bies.950150410.
4
Bacteriophage lambda: the untold story.
J Mol Biol. 1999 Oct 22;293(2):177-80. doi: 10.1006/jmbi.1999.3137.
6
Comparative molecular biology of lambdoid phages.
Annu Rev Microbiol. 1994;48:193-222. doi: 10.1146/annurev.mi.48.100194.001205.
7
Why Be Temperate: Lessons from Bacteriophage λ.
Trends Microbiol. 2016 May;24(5):356-365. doi: 10.1016/j.tim.2016.02.008. Epub 2016 Mar 3.
8
One day in François Jacob's laboratory.
Res Microbiol. 2014 Jun;165(5):343-5. doi: 10.1016/j.resmic.2014.05.025. Epub 2014 May 20.
9
Two "what if" experiments.
Cell. 2004 Jan 23;116(2 Suppl):S71-2, 2 p following S76. doi: 10.1016/s0092-8674(03)01076-6.
10
Lambda as a cloning vector.
Curr Protoc Mol Biol. 2001 May;Chapter 1:Unit1.10. doi: 10.1002/0471142727.mb0110s00.

引用本文的文献

1
Lysogenic control of Bacillus subtilis morphology and fitness by Spbetavirus phi3T.
Commun Biol. 2025 Aug 18;8(1):1238. doi: 10.1038/s42003-025-08672-x.
2
Phage-based delivery of CRISPR-associated transposases for targeted bacterial editing.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2504853122. doi: 10.1073/pnas.2504853122. Epub 2025 Jul 25.
3
Precision targeting of genetic variations in mixed bacterial cultures using CRISPR-Cas12a-programmed λ phages.
Front Microbiol. 2025 Jun 2;16:1575339. doi: 10.3389/fmicb.2025.1575339. eCollection 2025.
6
Noncanonical amino acids as prophage inducers for protein regulation in bacteria-based delivery systems.
mBio. 2025 Apr 9;16(4):e0398824. doi: 10.1128/mbio.03988-24. Epub 2025 Mar 14.
7
Genomic and proteomic analyses of Nus-dependent non-lambdoid phages reveal a novel coliphage group prevalent in gut: mEp.
Front Microbiol. 2025 Feb 24;16:1480411. doi: 10.3389/fmicb.2025.1480411. eCollection 2025.
8
Phage reprogramming of amino acid metabolism drives efficient phage replication.
mBio. 2025 Mar 12;16(3):e0246624. doi: 10.1128/mbio.02466-24. Epub 2025 Feb 7.
9
Spatial propagation of temperate phages within and among biofilms.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417058122. doi: 10.1073/pnas.2417058122. Epub 2025 Feb 4.
10
Activation and modulation of the host response to DNA damage by an integrative and conjugative element.
J Bacteriol. 2025 Feb 20;207(2):e0046224. doi: 10.1128/jb.00462-24. Epub 2025 Jan 23.

本文引用的文献

2
Genetics of critical contacts and clashes in the DNA packaging specificities of bacteriophages λ and 21.
Virology. 2015 Feb;476:115-123. doi: 10.1016/j.virol.2014.11.028. Epub 2014 Dec 24.
5
7
Phage lambda capsids as tunable display nanoparticles.
Biomacromolecules. 2014 Dec 8;15(12):4410-9. doi: 10.1021/bm5011646. Epub 2014 Nov 20.
8
DNA supercoiling: a regulatory signal for the λ repressor.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15402-7. doi: 10.1073/pnas.1320644111. Epub 2014 Oct 15.
9
Solid-to-fluid-like DNA transition in viruses facilitates infection.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14675-80. doi: 10.1073/pnas.1321637111. Epub 2014 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验