1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305, USA.
1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials and Department of Physics, Stanford University, Stanford, California 94305, USA.
Nat Commun. 2015 Mar 6;6:6425. doi: 10.1038/ncomms7425.
For materials that harbour a continuous phase transition, the susceptibility of the material to various fields can be used to understand the nature of the fluctuating order and hence the nature of the ordered state. Here we use anisotropic biaxial strain to probe the nematic susceptibility of URu2Si2, a heavy fermion material for which the nature of the low temperature 'hidden order' state has defied comprehensive understanding for over 30 years. Our measurements reveal that the fluctuating order has a nematic component, confirming reports of twofold anisotropy in the broken symmetry state and strongly constraining theoretical models of the hidden-order phase.
对于具有连续相变的材料,可以利用材料对各种场的磁化率来了解涨落序的性质,从而了解有序态的性质。在这里,我们使用各向异性双轴应变来探测 URu2Si2 的向列磁化率,URu2Si2 是一种重费米子材料,其低温“隐藏有序”状态的性质 30 多年来一直难以全面理解。我们的测量结果表明,涨落序具有向列分量,这证实了在对称破缺态下存在两倍各向异性的报告,并强烈约束了隐藏有序相的理论模型。