Ghosh Sayak, Matty Michael, Baumbach Ryan, Bauer Eric D, Modic K A, Shekhter Arkady, Mydosh J A, Kim Eun-Ah, Ramshaw B J
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA.
Sci Adv. 2020 Mar 6;6(10):eaaz4074. doi: 10.1126/sciadv.aaz4074. eCollection 2020 Mar.
The unusual correlated state that emerges in URuSi below = 17.5 K is known as "hidden order" because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are "hidden." We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across . We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems.
在17.5K以下的URuSi中出现的异常关联态被称为“隐藏序”,因为序参量的一些基本特性,比如其维度(是具有一个分量还是两个分量)都是“隐藏的”。我们使用共振超声光谱法来测量整个转变温度范围内对称性分辨的弹性异常。我们在剪切弹性模量中未观察到异常,这为单分量序参量提供了强有力的热力学证据。我们开发了一种机器学习框架,即使在对于传统共振超声来说太小的晶体中,也能直接从原始数据得出这一结论。我们的结果排除了基于双分量序参量的一大类隐藏序理论,并限制了在更低温度下出现非常规超导性的涨落的性质。我们的机器学习框架是用于对关联电子系统中普遍存在的竞争序进行分类的强大新工具。