Tang Xinyu, Wahed Abdus S
College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
J Stat Theory Pract. 2015 Apr;9(2):266-287. doi: 10.1080/15598608.2013.878888.
Sequentially randomized designs are commonly used in biomedical research, particularly in clinical trials, to assess and compare the effects of different treatment regimes. In such designs, eligible patients are first randomized to one of the initial therapies, then patients with some intermediate response (e.g. without progressive diseases) are randomized to one of the maintenance therapies. The goal is to evaluate dynamic treatment regimes consisting of an initial therapy, the intermediate response, and a maintenance therapy. In this article, we demonstrate the use of pattern-mixture model (commonly used for analyzing missing data) for estimating the effects of treatment regimes based on familiar survival analysis techniques such as Nelson-Aalen and parametric models. Moreover, we demonstrate how to use estimates from pattern-mixture models to test for the differences across treatment regimes in a weighted log-rank setting. We investigate the properties of the proposed estimators and test in a Monte Carlo simulation study. Finally we demonstrate the methods using the long-term survival data from the high risk neuroblastoma study.
序贯随机设计常用于生物医学研究,尤其是在临床试验中,以评估和比较不同治疗方案的效果。在这种设计中,符合条件的患者首先被随机分配到初始治疗方案之一,然后对有某种中间反应(如无疾病进展)的患者随机分配到维持治疗方案之一。目标是评估由初始治疗、中间反应和维持治疗组成的动态治疗方案。在本文中,我们展示了如何使用模式混合模型(常用于分析缺失数据),基于诸如纳尔逊 - 艾伦法和参数模型等常见的生存分析技术来估计治疗方案的效果。此外,我们展示了如何使用模式混合模型的估计值,在加权对数秩检验的情况下检验不同治疗方案之间的差异。我们在蒙特卡罗模拟研究中研究了所提出估计量和检验的性质。最后,我们使用高危神经母细胞瘤研究的长期生存数据展示了这些方法。