Suppr超能文献

神经母细胞瘤治疗方案的模式混合类型估计与检验

Pattern-mixture-type Estimation and Testing of Neuroblastoma Treatment Regimes.

作者信息

Tang Xinyu, Wahed Abdus S

机构信息

College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR

Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA

出版信息

J Stat Theory Pract. 2015 Apr;9(2):266-287. doi: 10.1080/15598608.2013.878888.

Abstract

Sequentially randomized designs are commonly used in biomedical research, particularly in clinical trials, to assess and compare the effects of different treatment regimes. In such designs, eligible patients are first randomized to one of the initial therapies, then patients with some intermediate response (e.g. without progressive diseases) are randomized to one of the maintenance therapies. The goal is to evaluate dynamic treatment regimes consisting of an initial therapy, the intermediate response, and a maintenance therapy. In this article, we demonstrate the use of pattern-mixture model (commonly used for analyzing missing data) for estimating the effects of treatment regimes based on familiar survival analysis techniques such as Nelson-Aalen and parametric models. Moreover, we demonstrate how to use estimates from pattern-mixture models to test for the differences across treatment regimes in a weighted log-rank setting. We investigate the properties of the proposed estimators and test in a Monte Carlo simulation study. Finally we demonstrate the methods using the long-term survival data from the high risk neuroblastoma study.

摘要

序贯随机设计常用于生物医学研究,尤其是在临床试验中,以评估和比较不同治疗方案的效果。在这种设计中,符合条件的患者首先被随机分配到初始治疗方案之一,然后对有某种中间反应(如无疾病进展)的患者随机分配到维持治疗方案之一。目标是评估由初始治疗、中间反应和维持治疗组成的动态治疗方案。在本文中,我们展示了如何使用模式混合模型(常用于分析缺失数据),基于诸如纳尔逊 - 艾伦法和参数模型等常见的生存分析技术来估计治疗方案的效果。此外,我们展示了如何使用模式混合模型的估计值,在加权对数秩检验的情况下检验不同治疗方案之间的差异。我们在蒙特卡罗模拟研究中研究了所提出估计量和检验的性质。最后,我们使用高危神经母细胞瘤研究的长期生存数据展示了这些方法。

相似文献

1
Pattern-mixture-type Estimation and Testing of Neuroblastoma Treatment Regimes.
J Stat Theory Pract. 2015 Apr;9(2):266-287. doi: 10.1080/15598608.2013.878888.
3
Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula.
Stat Biosci. 2011 Sep 1;3(1):119-143. doi: 10.1007/s12561-011-9040-7.
5
Estimation of optimal dynamic treatment regimes.
Clin Trials. 2014 Aug;11(4):400-407. doi: 10.1177/1740774514532570. Epub 2014 May 28.
6
Treatment effects in randomized longitudinal trials with different types of nonignorable dropout.
Psychol Methods. 2014 Jun;19(2):188-210. doi: 10.1037/a0033804. Epub 2013 Sep 30.
7
Estimation of a decreasing hazard of patients with acute coronary syndrome.
Stat Med. 2013 Mar 30;32(7):1223-38. doi: 10.1002/sim.5538. Epub 2012 Jul 25.
8
Expressing estimators of expected quality adjusted survival as functions of Nelson-Aalen estimators.
Lifetime Data Anal. 1999 Sep;5(3):199-212. doi: 10.1023/a:1009657629713.
9
Dynamic treatment regimes: practical design considerations.
Clin Trials. 2004 Feb;1(1):9-20. doi: 10.1191/1740774s04cn002oa.
10
Introducing a new estimator and test for the weighted all-cause hazard ratio.
BMC Med Res Methodol. 2019 Jun 11;19(1):118. doi: 10.1186/s12874-019-0765-1.

引用本文的文献

1
Cumulative incidence regression for dynamic treatment regimens.
Biostatistics. 2020 Apr 1;21(2):e113-e130. doi: 10.1093/biostatistics/kxy062.

本文引用的文献

1
Screening Experiments for Developing Dynamic Treatment Regimes.
J Am Stat Assoc. 2009 Mar 1;104(485):391-408. doi: 10.1198/jasa.2009.0119.
2
Marginal Mean Models for Dynamic Regimes.
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.
4
Cox regression methods for two-stage randomization designs.
Biometrics. 2007 Jun;63(2):422-8. doi: 10.1111/j.1541-0420.2007.00707.x. Epub 2007 Apr 9.
5
Comparison of dynamic treatment regimes via inverse probability weighting.
Basic Clin Pharmacol Toxicol. 2006 Mar;98(3):237-42. doi: 10.1111/j.1742-7843.2006.pto_329.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验