Albers Joachim, Danzer Claudia, Rechsteiner Markus, Lehmann Holger, Brandt Laura P, Hejhal Tomas, Catalano Antonella, Busenhart Philipp, Gonçalves Ana Filipa, Brandt Simone, Bode Peter K, Bode-Lesniewska Beata, Wild Peter J, Frew Ian J
J Clin Invest. 2015 Apr;125(4):1603-19. doi: 10.1172/JCI79743. Epub 2015 Mar 9.
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.
在此,我们描述了多重慢病毒表达(MuLE)系统,该系统可使多种基因改变同时引入哺乳动物细胞。我们创建了一个MuLE载体工具箱,它构成了一个灵活的模块化系统,用于快速构建复杂的多顺反子慢病毒,允许组合基因过表达、基因敲低、Cre介导的基因缺失或CRISPR/Cas9介导的(其中CRISPR表示成簇规律间隔短回文重复序列)基因突变,同时表达用于细胞分析和动物成像的荧光或酶报告基因。通过肿瘤工程的实例来说明使用MuLE系统进行组合遗传学研究的速度和多功能性。通过用单个MuLE慢病毒转导培养的原代小鼠细胞,我们构建了含有多达5种不同基因改变的肿瘤,确定了分子定义肿瘤的基因依赖性,进行了遗传相互作用筛选,并诱导了3个肿瘤抑制基因的同时CRISPR/Cas9介导的敲除。肌肉注射表达致癌性H-RasG12V的MuLE病毒,同时联合敲低肿瘤抑制因子细胞周期蛋白依赖性激酶抑制剂2A(Cdkn2a)、转化相关蛋白53(Trp53)和磷酸酶及张力蛋白同源物(Pten),可生成3种小鼠肉瘤模型,这表明通过将多顺反子MuLE慢病毒直接注射到小鼠组织中,可以快速生成并定量监测基因定义的原位肿瘤。总之,我们的结果表明,MuLE系统为系统研究人类疾病潜在的分子机制提供了遗传工具。