†Department of Chemical Engineering, Columbia University, New York City, New York 10027, United States.
‡Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
J Am Chem Soc. 2015 Apr 1;137(12):4030-3. doi: 10.1021/ja512799d. Epub 2015 Mar 23.
Nanoparticle (NP) assembly using DNA recognition has emerged as a powerful tool for the fabrication of 3D superlattices. In addition to the vast structural diversity, this approach provides an avenue for dynamic 3D NP assembly, which is promising for the modulation of interparticle distances and, hence, for example, for in situ tuning of optical properties. While several approaches have been explored for changing NP separations in the lattices using responsiveness of single-stranded DNA (ss-DNA), far less work has been done for the manipulation of most abundant double-stranded DNA (ds-DNA) motifs. Here, we present a novel strategy for modulation of interparticle distances in DNA linked 3D self-assembled NP lattices by molecular intercalator. We utilize ethidium bromide (EtBr) as a model intercalator to demonstrate selective and isotropic lattice expansion for three superlattice types (bcc, fcc, and AlB2) due to the intercalation of ds-DNA linking NPs. We further show the reversibility of the lattice parameter using n-butanol as a retrieving agent as well as an increased lattice thermal stability by 12-14 °C due to the inclusion of EtBr. The proposed intercalator-based strategy permits the creation of reconfigurable and thermally stable superlattices, which could lead to tunable and functionally responsive materials.
使用 DNA 识别的纳米颗粒 (NP) 组装已经成为制造 3D 超晶格的有力工具。除了具有巨大的结构多样性外,这种方法还为动态 3D NP 组装提供了途径,有望调节粒子间的距离,从而例如,用于原位调节光学性质。虽然已经探索了几种方法来使用单链 DNA(ss-DNA)的响应性改变晶格中的 NP 分离,但对于操纵最丰富的双链 DNA(ds-DNA)基序的工作却很少。在这里,我们提出了一种通过分子嵌入剂来调节 DNA 连接的 3D 自组装 NP 晶格中粒子间距离的新策略。我们利用溴化乙锭 (EtBr) 作为模型嵌入剂,由于 ds-DNA 连接 NPs 的嵌入,证明了三种超晶格类型(体心立方 (bcc)、面心立方 (fcc) 和 AlB2)的选择性和各向同性晶格扩展。我们进一步展示了使用正丁醇作为检索剂的晶格参数的可逆性,以及由于 EtBr 的包含而增加了 12-14°C 的晶格热稳定性。所提出的基于嵌入剂的策略允许创建可重构和热稳定的超晶格,这可能导致可调谐和功能响应的材料。