Seo Soyoung E, Girard Martin, de la Cruz Monica Olvera, Mirkin Chad A
Departments of Chemistry and Materials Science and Engineering, International Institute for Nanotechnology, and Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States.
ACS Cent Sci. 2019 Jan 23;5(1):186-191. doi: 10.1021/acscentsci.8b00826. Epub 2019 Jan 8.
Realizing functional colloidal single crystals requires precise control over nanoparticles in three dimensions across multiple size regimes. In this regard, colloidal crystallization with programmable atom equivalents (PAEs) composed of DNA-modified nanoparticles allows one to program in a sequence-specific manner crystal symmetry, lattice parameter, and, in certain cases, crystal habit. Here, we explore how salt and the electrostatic properties of DNA regulate the attachment kinetics between PAEs. Counterintuitively, simulations and theory show that at high salt concentrations (1 M NaCl), the energy barrier for crystal growth increases by over an order of magnitude compared to low concentration (0.3 M), resulting in a transition from interface-limited to diffusion-limited crystal growth at larger crystal sizes. Remarkably, at elevated salt concentrations, well-formed rhombic dodecahedron-shaped microcrystals up to 21 μm in size grow, whereas at low salt concentration, the crystal size typically does not exceed 2 μm. Simulations show an increased barrier to hybridization between complementary PAEs at elevated salt concentrations. Therefore, although one might intuitively conclude that higher salt concentration would lead to less electrostatic repulsion and faster PAE-to-PAE hybridization kinetics, the opposite is the case, especially at larger inter-PAE distances. These observations provide important insight into how solution ionic strength can be used to control the attachment kinetics of nanoparticles coated with charged polymeric materials in general and DNA in particular.
实现功能性胶体单晶需要在多个尺寸范围内对纳米颗粒进行三维精确控制。在这方面,由DNA修饰的纳米颗粒组成的具有可编程原子当量(PAE)的胶体结晶允许人们以序列特异性的方式对晶体对称性、晶格参数以及在某些情况下的晶体习性进行编程。在这里,我们探讨盐和DNA的静电特性如何调节PAE之间的附着动力学。与直觉相反,模拟和理论表明,在高盐浓度(1 M NaCl)下,与低浓度(0.3 M)相比,晶体生长的能垒增加了一个数量级以上,导致在较大晶体尺寸下从界面受限的晶体生长转变为扩散受限的晶体生长。值得注意的是,在较高盐浓度下,会生长出尺寸达21μm的形状规整的菱形十二面体微晶,而在低盐浓度下,晶体尺寸通常不超过2μm。模拟表明,在较高盐浓度下,互补PAE之间的杂交能垒增加。因此,尽管人们可能直观地得出结论,较高的盐浓度会导致较少的静电排斥和更快的PAE与PAE之间的杂交动力学,但实际情况恰恰相反,尤其是在较大的PAE间距时。这些观察结果为如何利用溶液离子强度来控制一般情况下特别是DNA包覆的纳米颗粒的附着动力学提供了重要的见解。