Williams Ryan R, Venkatesh Ishwariya, Pearse Damien D, Udvadia Ava J, Bunge Mary Bartlett
The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America.
PLoS One. 2015 Mar 9;10(3):e0118918. doi: 10.1371/journal.pone.0118918. eCollection 2015.
Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.
与成年哺乳动物的中枢神经系统(CNS)神经元不同,鱼类和胚胎期哺乳动物的神经元在受伤后能够再生其轴突。这些不同的再生反应部分是由特定转录因子的生长相关表达介导的。碱性螺旋-环-螺旋(bHLH)转录因子MASH1/Ascl1a在许多神经元亚型的发育过程中短暂表达,并调节介导细胞命运决定和分化的基因的表达。在成年斑马鱼(Danio rerio)中,Ascl1a也在视神经挤压后再生轴突的视网膜神经节细胞(RGCs)中短暂表达。利用具有驱动增强型绿色荧光蛋白(EGFP)表达的3.6 kb GAP43启动子的转基因斑马鱼,我们观察到与对照组相比,Ascl1a表达的敲低会降低损伤后的再生gap43基因表达和轴突生长。在哺乳动物中,去甲肾上腺素能脑干神经元的发育需要MASH1表达。然而,与斑马鱼RGCs不同的是,脊髓损伤(SCI)后MASH1在哺乳动物脑干中不表达。因此,我们利用腺相关病毒(AAV)载体在4个月大的大鼠(Rattus norvegicus)脑干神经元中过表达MASH1,试图促进SCI后的轴突再生。我们发现,在胸段脊髓完全横断并植入雪旺细胞桥后,与对照组相比,表达MASH1的动物去甲肾上腺素能轴突再生增加,后肢关节运动改善。这些数据共同表明,MASH1/Ascl1a是脊椎动物轴突生长的基本调节因子,并且可以诱导神经元内在状态的改变,以促进对CNS损伤的功能性再生。