Suppr超能文献

[基于近红外光谱法测定油页岩含油率的波长变量选择方法研究]

[Research on wavelength variates selection methods for determination of oil yield in oil shales using near-infrared spectroscopy].

作者信息

Zhao Zhen-Ying, Lin Jun, Zhang Fu-Dong, Li Jun

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Nov;34(11):2948-52.

Abstract

The wavelength selection is an important step in the spectra modeling analysis. In the present paper, three wavelength selection methods, including correlation coefficient (CC), moving window partial least squares (MWPLS) and uninformative variables elimination (UVE), were studied for the determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy. The above methods were used to eliminate the redundant and irrelevant variables in spectral data for enhancing the analytic efficiency and predictive ability of calibration model. The effects of thresholds of CC, window width of MWPLS and noise matrix of UVE were studied. Partial least squares regression was used to build prediction model for predicting oil yield in oil shale, and the performance of PLS models constructed with and without the using of wavelength selection methods were compared. The results show that any of the three methods can simplify the calibration model and improve the performance of model. By using UVE, the total number of wavelength variables of spectral data, the RMSECV of calibration model and the RMSEP of prediction model were decreased by 22.8%, 9.3% and 4.5%, respectively.

摘要

波长选择是光谱建模分析中的重要一步。本文研究了三种波长选择方法,包括相关系数(CC)法、移动窗口偏最小二乘法(MWPLS)和无信息变量消除法(UVE),用于利用近红外(NIR)漫反射光谱法测定油页岩中的油产率。上述方法用于消除光谱数据中的冗余和无关变量,以提高校准模型的分析效率和预测能力。研究了CC的阈值、MWPLS的窗口宽度和UVE的噪声矩阵的影响。采用偏最小二乘回归建立了预测油页岩油产率的预测模型,并比较了使用和不使用波长选择方法构建的PLS模型的性能。结果表明,这三种方法中的任何一种都可以简化校准模型并提高模型性能。使用UVE时,光谱数据的波长变量总数、校准模型的RMSECV和预测模型的RMSEP分别降低了22.8%、9.3%和4.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验