Suppr超能文献

光流动态纹理在土地利用/覆盖变化检测中的应用

[Application of optical flow dynamic texture in land use/cover change detection].

作者信息

Yan Li, Gong Yi-Long, Zhang Yi, Duan Wei

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Nov;34(11):3056-61.

Abstract

In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better performance than the post-classification change detection methods using spectral information only.

摘要

在本研究中,基于光流动态纹理(OFDT)提出了一种用于高分辨率遥感影像的新型变化检测方法,该方法能够通过对地面物体变化的动态描述自动获取土地利用与土地覆盖变化信息。本文从光流理论原理出发描述了地面物体的渐变过程,打破了以往遥感变化检测方法中地面物体突变的假设。由于该方法步骤简单,可集成到土地资源管理和城市规划软件等需要查找地面物体变化的系统和软件中。该方法考虑了遥感影像之间的时间维度特征,为遥感变化检测提供了更丰富的信息集,从而改善了大多数变化检测方法主要依赖空间维度信息的现状。在本文中,光流动态纹理是变化的基本反映,它被用于高分辨率遥感影像支持向量机后分类变化检测,并结合光谱信息。本文考虑的时间维度纹理的数据量比大多数空间维度纹理的数据量小。高度自动化的纹理计算只需设置一个参数,可缓解目前繁重的人工评估现状。利用覆盖中国大庆市杜尔伯特蒙古族自治县的2011年和2012年快鸟数据集对所提方法的有效性进行了评估。然后,深入分析了不同光流平滑系数的影响以及该系数对方法中地面物体变化描述的影响:实验结果令人满意,总体精度为87.29%,Kappa指数为0.850 7,该方法比仅使用光谱信息的后分类变化检测方法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验