Suppr超能文献

神经胶质细胞:神经元连接维持的守护者、吞噬者还是引导者?

Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity?

作者信息

Jebelli Joseph, Su Wei, Hopkins Stephanie, Pocock Jennifer, Garden Gwenn A

机构信息

Department of Neurology, University of Washington, Seattle, Washington.

Department of Neuroinflammation, University College London Institute of Neurology, London, United Kingdom.

出版信息

Ann N Y Acad Sci. 2015 Sep;1351(1):1-10. doi: 10.1111/nyas.12711. Epub 2015 Mar 9.

Abstract

An emerging aspect of neuronal-glial interactions is the connection glial cells have to synapses. Mounting research now suggests a far more intimate relationship than previously recognized. Moreover, the current evidence implicating synapse loss in neurodegenerative disease etiology is overwhelming, but the role of glia in the process of synaptic degeneration has only recently been considered in earnest. Each main class of glial cell, including astrocytes, oligodendrocytes, and microglia, performs crucial and multifaceted roles in the maintenance of synaptic function and excitability. As such, aging and/or neuronal stress from disease-related misfolded proteins may involve disruption of multiple non-cell-autonomous synaptic support systems that are mediated by neighboring glia. In addition, glial cell activation induced by injury, ischemia, or neurodegeneration is thought to greatly alter the behavior of glial cells toward neuronal synapses, suggesting that neuroinflammation potentially contributes to synapse loss primarily mediated by altered glial functions. This review discusses recent evidence highlighting novel roles for glial cells at neuronal synapses and in the maintenance of neuronal connectivity, focusing primarily on their implications for neurodegenerative disease research.

摘要

神经胶质细胞与神经元相互作用的一个新出现的方面是神经胶质细胞与突触之间的联系。越来越多的研究表明,二者之间的关系比之前认为的更为密切。此外,目前有压倒性的证据表明突触丧失与神经退行性疾病的病因有关,但神经胶质细胞在突触退化过程中的作用直到最近才得到认真考虑。每一类主要的神经胶质细胞,包括星形胶质细胞、少突胶质细胞和小胶质细胞,在维持突触功能和兴奋性方面都发挥着至关重要且多方面的作用。因此,衰老和/或与疾病相关的错误折叠蛋白引起的神经元应激可能涉及多个由邻近神经胶质细胞介导的非细胞自主突触支持系统的破坏。此外,由损伤、缺血或神经退行性变诱导的神经胶质细胞激活被认为会极大地改变神经胶质细胞对神经元突触的行为,这表明神经炎症可能主要通过改变神经胶质细胞功能导致突触丧失。本综述讨论了最近的证据,这些证据突出了神经胶质细胞在神经元突触处以及在维持神经元连接方面的新作用,主要关注它们对神经退行性疾病研究的意义。

相似文献

1
Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity?
Ann N Y Acad Sci. 2015 Sep;1351(1):1-10. doi: 10.1111/nyas.12711. Epub 2015 Mar 9.
2
Glial Cells and Integrity of the Nervous System.
Adv Exp Med Biol. 2016;949:1-24. doi: 10.1007/978-3-319-40764-7_1.
3
NG2-glia, More Than Progenitor Cells.
Adv Exp Med Biol. 2016;949:27-45. doi: 10.1007/978-3-319-40764-7_2.
4
New insights into neuron-glia communication.
Science. 2002 Oct 18;298(5593):556-62. doi: 10.1126/science.298.5593.556.
5
[Neuroglia--living nerve glue].
Fortschr Neurol Psychiatr. 2011 Oct;79(10):588-97. doi: 10.1055/s-0031-1281704. Epub 2011 Oct 11.
7
[Astrocytes and microglia: active players in synaptic plasticity].
Med Sci (Paris). 2017 Dec;33(12):1071-1078. doi: 10.1051/medsci/20173312014. Epub 2017 Dec 20.
8
Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
J Neurochem. 2009 Feb;108(3):533-44. doi: 10.1111/j.1471-4159.2008.05830.x.
9
Estradiol modulation of astrocytic form and function: implications for hormonal control of synaptic communication.
Neuroscience. 2006;138(3):967-75. doi: 10.1016/j.neuroscience.2005.10.017. Epub 2005 Dec 2.

引用本文的文献

1
Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition.
J Neurosci. 2024 Oct 2;44(40):e1231242024. doi: 10.1523/JNEUROSCI.1231-24.2024.
2
Network synchronization deficits caused by dementia and Alzheimer's disease serve as topographical biomarkers: a pilot study.
Brain Struct Funct. 2022 Dec;227(9):2957-2969. doi: 10.1007/s00429-022-02554-2. Epub 2022 Aug 23.
4
The Danaid Theory of Aging.
Front Cell Dev Biol. 2022 Jan 3;9:671208. doi: 10.3389/fcell.2021.671208. eCollection 2021.
5
A Subpopulation of Microglia Generated in the Adult Mouse Brain Originates from Prominin-1-Expressing Progenitors.
J Neurosci. 2021 Sep 22;41(38):7942-7953. doi: 10.1523/JNEUROSCI.1893-20.2021. Epub 2021 Aug 11.
7
GATA3 Promotes the Neural Progenitor State but Not Neurogenesis in 3D Traumatic Injury Model of Primary Human Cortical Astrocytes.
Front Cell Neurosci. 2019 Feb 11;13:23. doi: 10.3389/fncel.2019.00023. eCollection 2019.
9
Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective.
Front Cell Dev Biol. 2018 Nov 23;6:159. doi: 10.3389/fcell.2018.00159. eCollection 2018.

本文引用的文献

1
The emerging functions of oligodendrocytes in regulating neuronal network behaviour.
Bioessays. 2015 Jan;37(1):60-9. doi: 10.1002/bies.201400127. Epub 2014 Nov 3.
2
Motor skill learning requires active central myelination.
Science. 2014 Oct 17;346(6207):318-22. doi: 10.1126/science.1254960.
4
Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells.
Neuroscientist. 2015 Jun;21(3):266-76. doi: 10.1177/1073858414530784. Epub 2014 Apr 10.
5
Involvement of 'stress-response' kinase pathways in Alzheimer's disease progression.
Curr Opin Neurobiol. 2014 Aug;27:110-7. doi: 10.1016/j.conb.2014.03.011. Epub 2014 Apr 5.
6
Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice.
Nat Neurosci. 2014 May;17(5):694-703. doi: 10.1038/nn.3691. Epub 2014 Mar 30.
7
Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease.
Aging Cell. 2014 Aug;13(4):584-95. doi: 10.1111/acel.12210. Epub 2014 Mar 18.
8
The role of neuronal activity and transmitter release on synapse formation.
Curr Opin Neurobiol. 2014 Aug;27(100):47-52. doi: 10.1016/j.conb.2014.02.008. Epub 2014 Mar 13.
9
Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase.
Neuron. 2014 Apr 2;82(1):195-207. doi: 10.1016/j.neuron.2014.01.043. Epub 2014 Mar 13.
10
Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease.
Drug Discov Today. 2014 Jul;19(7):990-6. doi: 10.1016/j.drudis.2014.02.006. Epub 2014 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验