Suppr超能文献

神经元-胶质细胞相互作用:对可塑性、行为和认知的影响。

Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition.

机构信息

Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852

Center for Neural Science, New York University, New York, New York 10003.

出版信息

J Neurosci. 2024 Oct 2;44(40):e1231242024. doi: 10.1523/JNEUROSCI.1231-24.2024.

Abstract

The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.

摘要

传统观点认为神经胶质细胞只是一种支持组织,但由于技术和理论概念的进步,其功能已经多样化,包括调节复杂行为等。星形胶质细胞是中枢神经系统(CNS)中最丰富的神经胶质细胞,它们通过神经递质介导的神经递质再摄取来调节突触功能,影响神经元信号和行为功能。当代研究进一步强调了星形胶质细胞在复杂认知功能中的作用。例如,抑制海马体中的星形胶质细胞会导致记忆缺陷,这表明它们在记忆过程中起着不可或缺的作用。此外,星形胶质细胞钙活性和星形胶质细胞-神经元代谢偶联与突触强度和学习的变化有关。小胶质细胞是另一种神经胶质细胞,其作用也不仅仅局限于支持作用,还参与学习和记忆过程,小胶质细胞的减少会以发育依赖的方式影响这些功能。少突胶质细胞,传统上认为其在发育后作用有限,现在被认为具有髓鞘和可塑性的活动依赖性调节作用,从而影响行为反应。技术和计算模型的最新进展扩展了我们对神经胶质细胞功能的理解,特别是星形胶质细胞如何影响神经元回路和行为。这篇综述强调了神经胶质细胞在中枢神经系统功能中的重要性,以及需要进一步研究来阐明神经元-神经胶质细胞相互作用的复杂性、这些相互作用对大脑功能的影响以及对神经疾病的潜在影响。

相似文献

1
Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition.
J Neurosci. 2024 Oct 2;44(40):e1231242024. doi: 10.1523/JNEUROSCI.1231-24.2024.
2
Glia-neuron intercommunications and synaptic plasticity.
Prog Neurobiol. 1996 Jun;49(3):185-214. doi: 10.1016/s0301-0082(96)00012-3.
3
Glia: the many ways to modulate synaptic plasticity.
Neurochem Int. 2010 Nov;57(4):440-5. doi: 10.1016/j.neuint.2010.02.013. Epub 2010 Mar 1.
4
Glial biology in learning and cognition.
Neuroscientist. 2014 Oct;20(5):426-31. doi: 10.1177/1073858413504465. Epub 2013 Oct 11.
5
GLIA modulates synaptic transmission.
Brain Res Rev. 2010 May;63(1-2):93-102. doi: 10.1016/j.brainresrev.2009.10.005. Epub 2009 Nov 6.
6
Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity.
Neural Plast. 2015;2015:765792. doi: 10.1155/2015/765792. Epub 2015 Aug 3.
7
Neuron-glia interrelations.
Int Rev Neurobiol. 1988;30:149-224.
8
Glial cells in synaptic plasticity.
J Physiol Paris. 2006 Mar-May;99(2-3):75-83. doi: 10.1016/j.jphysparis.2005.12.002. Epub 2006 Jan 30.
10
Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
J Neurochem. 2009 Feb;108(3):533-44. doi: 10.1111/j.1471-4159.2008.05830.x.

引用本文的文献

2
Role of astrocytes in the pathogenesis of perinatal brain injury.
Mol Med. 2025 Aug 13;31(1):277. doi: 10.1186/s10020-025-01328-w.
5
In Situ synNotch-Programmed Astrocytes Sense and Attenuate Neuronal Apoptosis.
Int J Mol Sci. 2025 May 2;26(9):4343. doi: 10.3390/ijms26094343.
7
A predictive machine learning model for cannabinoid effect based on image detection of reactive oxygen species in microglia.
PLoS One. 2025 Mar 25;20(3):e0320219. doi: 10.1371/journal.pone.0320219. eCollection 2025.
8
Dopamine facilitates the response to glutamatergic inputs in astrocyte cell models.
PLoS Comput Biol. 2024 Dec 16;20(12):e1012688. doi: 10.1371/journal.pcbi.1012688. eCollection 2024 Dec.

本文引用的文献

2
Distinct engrams control fear and extinction memory.
Hippocampus. 2024 May;34(5):230-240. doi: 10.1002/hipo.23601. Epub 2024 Feb 23.
3
A conceptual framework for astrocyte function.
Nat Neurosci. 2023 Nov;26(11):1848-1856. doi: 10.1038/s41593-023-01448-8. Epub 2023 Oct 19.
4
Shaping the development of complex social behavior.
Ann N Y Acad Sci. 2023 Dec;1530(1):46-63. doi: 10.1111/nyas.15076. Epub 2023 Oct 19.
5
Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation.
Science. 2023 Jun 16;380(6650):eade0027. doi: 10.1126/science.ade0027.
7
Norepinephrine links astrocytic activity to regulation of cortical state.
Nat Neurosci. 2023 Apr;26(4):579-593. doi: 10.1038/s41593-023-01284-w. Epub 2023 Mar 30.
8
Analysis of Network Models with Neuron-Astrocyte Interactions.
Neuroinformatics. 2023 Apr;21(2):375-406. doi: 10.1007/s12021-023-09622-w. Epub 2023 Mar 23.
9
Differential Effects of Astrocyte Manipulations on Learned Motor Behavior and Neuronal Ensembles in the Motor Cortex.
J Neurosci. 2023 Apr 12;43(15):2696-2713. doi: 10.1523/JNEUROSCI.1982-22.2023. Epub 2023 Mar 9.
10
Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits.
Neuron. 2023 Apr 19;111(8):1301-1315.e5. doi: 10.1016/j.neuron.2023.01.015. Epub 2023 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验