Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
Center for Neural Science, New York University, New York, New York 10003.
J Neurosci. 2024 Oct 2;44(40):e1231242024. doi: 10.1523/JNEUROSCI.1231-24.2024.
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
传统观点认为神经胶质细胞只是一种支持组织,但由于技术和理论概念的进步,其功能已经多样化,包括调节复杂行为等。星形胶质细胞是中枢神经系统(CNS)中最丰富的神经胶质细胞,它们通过神经递质介导的神经递质再摄取来调节突触功能,影响神经元信号和行为功能。当代研究进一步强调了星形胶质细胞在复杂认知功能中的作用。例如,抑制海马体中的星形胶质细胞会导致记忆缺陷,这表明它们在记忆过程中起着不可或缺的作用。此外,星形胶质细胞钙活性和星形胶质细胞-神经元代谢偶联与突触强度和学习的变化有关。小胶质细胞是另一种神经胶质细胞,其作用也不仅仅局限于支持作用,还参与学习和记忆过程,小胶质细胞的减少会以发育依赖的方式影响这些功能。少突胶质细胞,传统上认为其在发育后作用有限,现在被认为具有髓鞘和可塑性的活动依赖性调节作用,从而影响行为反应。技术和计算模型的最新进展扩展了我们对神经胶质细胞功能的理解,特别是星形胶质细胞如何影响神经元回路和行为。这篇综述强调了神经胶质细胞在中枢神经系统功能中的重要性,以及需要进一步研究来阐明神经元-神经胶质细胞相互作用的复杂性、这些相互作用对大脑功能的影响以及对神经疾病的潜在影响。