Suppr超能文献

糖苷水解酶家族55中的活性位点与海带多糖结合

Active site and laminarin binding in glycoside hydrolase family 55.

作者信息

Bianchetti Christopher M, Takasuka Taichi E, Deutsch Sam, Udell Hannah S, Yik Eric J, Bergeman Lai F, Fox Brian G

机构信息

From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.

From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.

出版信息

J Biol Chem. 2015 May 8;290(19):11819-32. doi: 10.1074/jbc.M114.623579. Epub 2015 Mar 9.

Abstract

The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.

摘要

碳水化合物活性酶(CAZy)数据库表明,糖苷水解酶家族55(GH55)包含内切和外切β-1,3-葡聚糖酶。GH55家族的首个晶体结构是来自白腐真菌黄孢原毛平革菌(Phanerochaete chrysosporium)的PcLam55A(石田彻、伏信伸、河合良、北冈真、五十岚和岛田正(2009年)担子菌黄孢原毛平革菌糖苷水解酶家族55β-1,3-葡聚糖酶的晶体结构。《生物化学杂志》284卷,第10100 - 10109页)。在此,我们展示了来自高纤维素分解链霉菌(Streptomyces sp.)SirexAA - E的细菌SacteLam55A与结合底物和产物的高分辨率晶体结构。这些结构,连同诱变和动力学研究,表明Glu - 502是催化酸(如先前对PcLam55A中的Glu - 663所提出的),以及由四个残基组成的质子传递网络在激活水作为亲核试剂方面的作用。此外,一组定义活性位点的保守芳香族残基显然赋予了外切葡聚糖酶的反应活性,这通过与纯化的层叠寡糖的彻底水解反应得到证明。位于底物结合通道的另外两个芳香族残基表现出底物依赖性的构象灵活性,这可能促进细菌酶中结合寡糖的连续反应活性。对约30%的GH55家族进行基因合成得到了34种活性酶(占GH55非冗余成员的19%功能覆盖率)。这些活性酶仅与10种不同的可溶性和不溶性多糖组成的一组底物中的海带多糖反应,并表现出广泛的比活性以及pH和温度最佳值。这种实验方法的应用为注释糖苷水解酶系统发育空间的功能特性提供了一种新的、系统的方法。

相似文献

1
Active site and laminarin binding in glycoside hydrolase family 55.
J Biol Chem. 2015 May 8;290(19):11819-32. doi: 10.1074/jbc.M114.623579. Epub 2015 Mar 9.
2
Molecular mechanism for endo-type action of glycoside hydrolase family 55 endo-β-1,3-glucanase on β1-3/1-6-glucan.
J Biol Chem. 2023 Nov;299(11):105294. doi: 10.1016/j.jbc.2023.105294. Epub 2023 Sep 27.
3
Crystal structure and biological implications of a glycoside hydrolase family 55 β-1,3-glucanase from Chaetomium thermophilum.
Biochim Biophys Acta Proteins Proteom. 2017 Aug;1865(8):1030-1038. doi: 10.1016/j.bbapap.2017.05.002. Epub 2017 May 4.
6
The Quaternary Structure of a Glycoside Hydrolase Dictates Specificity toward β-Glucans.
J Biol Chem. 2016 Mar 25;291(13):7183-94. doi: 10.1074/jbc.M115.695999. Epub 2016 Jan 11.
8
Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from .
J Biol Chem. 2020 Dec 25;295(52):18539-18552. doi: 10.1074/jbc.RA120.016149. Epub 2020 Oct 22.
9
Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.
J Biol Chem. 2009 Apr 10;284(15):10100-9. doi: 10.1074/jbc.M808122200. Epub 2009 Feb 4.

引用本文的文献

2
An objective criterion to evaluate sequence-similarity networks helps in dividing the protein family sequence space.
PLoS Comput Biol. 2023 Aug 16;19(8):e1010881. doi: 10.1371/journal.pcbi.1010881. eCollection 2023 Aug.
3
Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
Appl Environ Microbiol. 2022 Oct 26;88(20):e0127422. doi: 10.1128/aem.01274-22. Epub 2022 Sep 28.
4
Heterologous expression and characterization of a novel glycoside hydrolase family 55 β-1,3-glucanase, AcGluA, from Archangium sp. strain AC19.
Appl Microbiol Biotechnol. 2021 Sep;105(18):6793-6803. doi: 10.1007/s00253-021-11513-6. Epub 2021 Sep 3.
5
Mannose- and Mannobiose-Specific Responses of the Insect-Associated Cellulolytic Bacterium sp. Strain SirexAA-E.
Appl Environ Microbiol. 2021 Jun 25;87(14):e0271920. doi: 10.1128/AEM.02719-20.
6
Reconstitution of Drosophila and human chromatins by wheat germ cell-free co-expression system.
BMC Biotechnol. 2020 Dec 1;20(1):62. doi: 10.1186/s12896-020-00655-6.
7
Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from .
J Biol Chem. 2020 Dec 25;295(52):18539-18552. doi: 10.1074/jbc.RA120.016149. Epub 2020 Oct 22.
8
Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family.
Nat Chem Biol. 2020 Aug;16(8):920-929. doi: 10.1038/s41589-020-0554-5. Epub 2020 May 25.
9
Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere.
ISME J. 2020 Mar;14(3):659-675. doi: 10.1038/s41396-019-0557-y. Epub 2019 Nov 21.
10
Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family.
J Biol Chem. 2019 May 10;294(19):7942-7965. doi: 10.1074/jbc.RA118.007087. Epub 2019 Mar 29.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Convergent bacterial microbiotas in the fungal agricultural systems of insects.
mBio. 2014 Nov 18;5(6):e02077. doi: 10.1128/mBio.02077-14.
3
Wounding in the plant tissue: the defense of a dangerous passage.
Front Plant Sci. 2014 Sep 16;5:470. doi: 10.3389/fpls.2014.00470. eCollection 2014.
4
Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases.
Biotechnol Biofuels. 2014 Aug 6;7:109. doi: 10.1186/1754-6834-7-109. eCollection 2014.
5
The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation.
Environ Microbiol Rep. 2014 Aug;6(4):389-95. doi: 10.1111/1758-2229.12163. Epub 2014 Apr 27.
8
Cell-free translation of biofuel enzymes.
Methods Mol Biol. 2014;1118:71-95. doi: 10.1007/978-1-62703-782-2_5.
10
Clustal Omega, accurate alignment of very large numbers of sequences.
Methods Mol Biol. 2014;1079:105-16. doi: 10.1007/978-1-62703-646-7_6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验