Lafond Mickael, Sulzenbacher Gerlind, Freyd Thibaud, Henrissat Bernard, Berrin Jean-Guy, Garron Marie-Line
From the Institut des Sciences Moléculaires de Marseille-BiosCiences, UMR7313 CNRS, Aix-Marseille University, Pôle de l'Etoile, 13284 Marseille, France, the INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille University, Polytech'Marseille, F-13288 Marseille, France.
the Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS, Aix-Marseille University, F-13288 Marseille, France, the INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France, and.
J Biol Chem. 2016 Mar 25;291(13):7183-94. doi: 10.1074/jbc.M115.695999. Epub 2016 Jan 11.
In the Carbohydrate-Active Enzyme (CAZy) database, glycoside hydrolase family 5 (GH5) is a large family with more than 6,000 sequences. Among the 51 described GH5 subfamilies, subfamily GH5_26 contains members that display either endo-β(1,4)-glucanase or β(1,3;1,4)-glucanase activities. In this study, we focused on the GH5_26 enzyme fromSaccharophagus degradans(SdGluc5_26A), a marine bacterium known for its capacity to degrade a wide diversity of complex polysaccharides.SdGluc5_26A displays lichenase activity toward β(1,3;1,4)-glucans with a side cellobiohydrolase activity toward β(1,4)-glucans. The three-dimensional structure ofSdGluc5_26A adopts a stable trimeric quaternary structure also observable in solution. The N-terminal region ofSdGluc5_26A protrudes into the active site of an adjacent monomer. To understand whether this occupation of the active site could influence its activity, we conducted a comprehensive enzymatic characterization ofSdGluc5_26A and of a mutant truncated at the N terminus. Ligand complex structures and kinetic analyses reveal that the N terminus governs the substrate specificity ofSdGluc5_26A. Its deletion opens the enzyme cleft at the -3 subsite and turns the enzyme into an endo-β(1,4)-glucanase. This study demonstrates that experimental approaches can reveal structure-function relationships out of reach of current bioinformatic predictions.
在碳水化合物活性酶(CAZy)数据库中,糖苷水解酶家族5(GH5)是一个拥有超过6000个序列的大家族。在所描述的51个GH5亚家族中,GH5_26亚家族的成员具有内切-β(1,4)-葡聚糖酶或β(1,3;1,4)-葡聚糖酶活性。在本研究中,我们聚焦于来自食糖降解嗜纤维菌(Saccharophagus degradans)的GH5_26酶(SdGluc5_26A),这是一种以能够降解多种复杂多糖而闻名的海洋细菌。SdGluc5_26A对β(1,3;1,4)-葡聚糖表现出地衣聚糖酶活性,对β(1,4)-葡聚糖具有侧链纤维二糖水解酶活性。SdGluc5_26A的三维结构呈现出一种稳定的三聚体四级结构,在溶液中也可观察到。SdGluc5_26A的N端区域伸入相邻单体的活性位点。为了了解这种对活性位点的占据是否会影响其活性,我们对SdGluc5_26A和一个在N端截短的突变体进行了全面的酶学表征。配体复合物结构和动力学分析表明,N端决定了SdGluc5_26A的底物特异性。其缺失会在-3亚位点打开酶的裂隙,使该酶转变为内切-β(1,4)-葡聚糖酶。这项研究表明,实验方法能够揭示当前生物信息学预测所无法企及的结构-功能关系。