Casañola-Martin Gerardo M, Le-Thi-Thu Huong, Pérez-Giménez Facundo, Marrero-Ponce Yovani, Merino-Sanjuán Matilde, Abad Concepción, González-Díaz Humberto
Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain,
Mol Divers. 2015 May;19(2):347-56. doi: 10.1007/s11030-015-9571-9. Epub 2015 Mar 10.
The ubiquitin-proteasome pathway (UPP) plays an important role in the degradation of cellular proteins and regulation of different cellular processes that include cell cycle control, proliferation, differentiation, and apoptosis. In this sense, the disruption of proteasome activity leads to different pathological states linked to clinical disorders such as inflammation, neurodegeneration, and cancer. The use of UPP inhibitors is one of the proposed approaches to manage these alterations. On other hand, the ChEMBL database contains >5,000 experimental outcomes for >2,000 compounds tested as possible proteasome inhibitors using a large number of pharmacological assay protocols. All these assays report a large number of experimental parameters of biological activity like EC50, IC50 percent of inhibition, and many others that have been determined under many different conditions, targets, organisms, etc. Although this large amount of data offers new opportunities for the computational discovery of proteasome inhibitors, the complexity of these data represents a bottleneck for the development of predictive models. In this work, we used linear molecular indices calculated with the software TOMOCOMD-CARDD and Box-Jenkins moving average operators to develop a multi-output model that can predict outcomes for 20 experimental parameters in >450 assays carried out under different conditions. This generated multi-output model showed values of accuracy, sensitivity, and specificity above 70% for training and validation series. Finally, this model is considered multi-target and multi-scale, because it predicts the inhibition of the UPP for drugs against 22 molecular or cellular targets of different organisms contained in the ChEMBL database.
泛素-蛋白酶体途径(UPP)在细胞蛋白质降解以及包括细胞周期控制、增殖、分化和凋亡在内的不同细胞过程的调节中发挥着重要作用。从这个意义上讲,蛋白酶体活性的破坏会导致与炎症、神经退行性变和癌症等临床疾病相关的不同病理状态。使用UPP抑制剂是应对这些改变的一种建议方法。另一方面,ChEMBL数据库包含使用大量药理学检测方案对2000多种化合物作为可能的蛋白酶体抑制剂进行测试的5000多个实验结果。所有这些检测都报告了大量生物活性的实验参数,如EC50、IC50抑制百分比以及许多其他在许多不同条件、靶点、生物体等下确定的参数。尽管这些大量数据为蛋白酶体抑制剂的计算发现提供了新机会,但这些数据的复杂性成为了预测模型开发的瓶颈。在这项工作中,我们使用软件TOMOCOMD-CARDD计算的线性分子指标和Box-Jenkins移动平均算子来开发一个多输出模型,该模型可以预测在不同条件下进行的450多次检测中20个实验参数的结果。这个生成的多输出模型在训练和验证系列中的准确性、敏感性和特异性值均高于70%。最后,该模型被认为是多靶点和多尺度的,因为它预测了针对ChEMBL数据库中不同生物体的22个分子或细胞靶点的药物对UPP的抑制作用。