Suppr超能文献

具有二次指数Box-Jenkins算子的多输出模型用于预测靶向泛素-蛋白酶体途径(UPP)蛋白的疟疾和癌症抑制剂。

Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins.

作者信息

Casañola-Martin Gerardo M, Le-Thi-Thu Huong, Pérez-Giménez Facundo, Marrero-Ponce Yovani, Merino-Sanjuán Matilde, Abad Concepción, González-Díaz Humberto

机构信息

Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100 Burjassot, Spain and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.

出版信息

Curr Protein Pept Sci. 2016;17(3):220-7. doi: 10.2174/1389203717999160226173500.

Abstract

The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets.

摘要

泛素 - 蛋白酶体途径(UPP)是短命调节蛋白的主要降解系统。细胞周期、信号转导、基因表达、DNA修复和细胞凋亡等细胞过程受该UPP调控,该系统功能失调在癌症、神经退行性疾病、心脏疾病及其他人类病理发展中具有重要意义。UPP在人类寄生虫如恶性疟原虫(被忽视疾病疟疾的病原体)的真核细胞功能中似乎也非常重要。因此,UPP可被视为开发具有抗疟疾或抗癌特性化合物的有吸引力的靶点。近期的在线数据库如ChEMBL在药理学测定方案和在许多不同条件下作为UPP抑制剂测试的化合物方面包含大量信息。这些大量数据为计算机辅助鉴定UPP抑制剂提供了新契机,但数据的内在多样性是成功开发分类器的障碍。为解决此问题,我们在此使用了Bob - Jenkins移动平均算子和用软件TOMOCOMD - CARDD(TC)计算的基于原子的二次分子指数,以开发一个用于预测此复杂数据集中多个输出的定量模型。我们的多靶点模型可以预测针对不同生物体的22个分子或细胞靶点的药物结果,在训练集和验证集中的准确率均高于70%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验