Suppr超能文献

线粒体中的碱基切除修复

Base Excision Repair in the Mitochondria.

作者信息

Prakash Aishwarya, Doublié Sylvie

机构信息

Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, Vermont.

出版信息

J Cell Biochem. 2015 Aug;116(8):1490-9. doi: 10.1002/jcb.25103.

Abstract

The 16.5 kb human mitochondrial genome encodes for 13 polypeptides, 22 tRNAs and 2 rRNAs involved in oxidative phosphorylation. Mitochondrial DNA (mtDNA), unlike its nuclear counterpart, is not packaged into nucleosomes and is more prone to the adverse effects of reactive oxygen species (ROS) generated during oxidative phosphorylation. The past few decades have witnessed an increase in the number of proteins observed to translocate to the mitochondria for the purposes of mitochondrial genome maintenance. The mtDNA damage produced by ROS, if not properly repaired, leads to instability and can ultimately manifest in mitochondrial dysfunction and disease. The base excision repair (BER) pathway is employed for the removal and consequently the repair of deaminated, oxidized, and alkylated DNA bases. Specialized enzymes called DNA glycosylases, which locate and cleave the damaged base, catalyze the first step of this highly coordinated repair pathway. This review focuses on members of the four human BER DNA glycosylase superfamilies and their subcellular localization in the mitochondria and/or the nucleus, as well as summarizes their structural features, biochemical properties, and functional role in the excision of damaged bases.

摘要

16.5 kb的人类线粒体基因组编码13种参与氧化磷酸化的多肽、22种tRNA和2种rRNA。与核DNA不同,线粒体DNA(mtDNA)不包装成核小体,更容易受到氧化磷酸化过程中产生的活性氧(ROS)的不利影响。在过去几十年中,观察到为了线粒体基因组维护而转运到线粒体的蛋白质数量有所增加。由ROS产生的mtDNA损伤,如果没有得到适当修复,会导致不稳定,并最终可能表现为线粒体功能障碍和疾病。碱基切除修复(BER)途径用于去除并因此修复脱氨基、氧化和烷基化的DNA碱基。一种称为DNA糖基化酶的特殊酶负责定位和切割受损碱基,催化这一高度协调的修复途径的第一步。本综述重点关注四个人类BER DNA糖基化酶超家族的成员及其在线粒体和/或细胞核中的亚细胞定位,并总结它们的结构特征、生化特性以及在切除受损碱基中的功能作用。

相似文献

1
Base Excision Repair in the Mitochondria.线粒体中的碱基切除修复
J Cell Biochem. 2015 Aug;116(8):1490-9. doi: 10.1002/jcb.25103.

引用本文的文献

1
Mitochondrial Diseases: Molecular Pathogenesis and Therapeutic Advances.线粒体疾病:分子发病机制与治疗进展
MedComm (2020). 2025 Sep 12;6(9):e70385. doi: 10.1002/mco2.70385. eCollection 2025 Sep.
3
Development and characterization of a novel NEIL1 nanobody.一种新型NEIL1纳米抗体的开发与表征
DNA Repair (Amst). 2025 Jun;150:103849. doi: 10.1016/j.dnarep.2025.103849. Epub 2025 May 22.
4
DNA repair pathways in the mitochondria.线粒体中的DNA修复途径。
DNA Repair (Amst). 2025 Feb;146:103814. doi: 10.1016/j.dnarep.2025.103814. Epub 2025 Feb 1.
5
Decoding mitochondrial DNA damage and repair associated with infection.解码与感染相关的线粒体DNA损伤和修复
Front Cell Infect Microbiol. 2025 Jan 21;14:1529441. doi: 10.3389/fcimb.2024.1529441. eCollection 2024.
9
Cisplatin in the era of PARP inhibitors and immunotherapy.顺铂在 PARP 抑制剂和免疫治疗时代。
Pharmacol Ther. 2024 Jun;258:108642. doi: 10.1016/j.pharmthera.2024.108642. Epub 2024 Apr 16.

本文引用的文献

5
Base excision repair.碱基切除修复。
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a012583. doi: 10.1101/cshperspect.a012583.
10
Recent advances in the structural mechanisms of DNA glycosylases.DNA糖基化酶结构机制的最新进展。
Biochim Biophys Acta. 2013 Jan;1834(1):247-71. doi: 10.1016/j.bbapap.2012.10.005. Epub 2012 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验