Suppr超能文献

使用MiST对大规模亲和纯化质谱数据集进行评分。

Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST.

作者信息

Verschueren Erik, Von Dollen John, Cimermancic Peter, Gulbahce Natali, Sali Andrej, Krogan Nevan J

机构信息

Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, California.

California Institute for Quantitative Biomedical Sciences, San Francisco, California.

出版信息

Curr Protoc Bioinformatics. 2015 Mar 9;49:8.19.1-8.19.16. doi: 10.1002/0471250953.bi0819s49.

Abstract

High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network.

摘要

高通量亲和纯化质谱(AP-MS)实验能够识别大量的蛋白质相互作用,但其中只有一小部分相互作用具有生物学相关性。在此,我们描述了一种全面的计算策略,用于处理原始AP-MS数据、进行质量控制,并在一组使用质谱相互作用统计(MiST)的重复AP-MS实验中,对具有生物学相关性的诱饵-猎物对进行优先级排序。MiST分数是猎物数量(丰度)、重复实验中丰度的不变性(可重复性)以及猎物相对于其他诱饵的独特性(特异性)的线性组合。我们描述了如何在R环境中运行完整的MiST分析流程,并讨论了一些可配置选项,这些选项使普通用户能够将任何大规模AP-MS数据转化为一个可解释的、具有生物学相关性的蛋白质-蛋白质相互作用网络。

相似文献

1
Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST.
Curr Protoc Bioinformatics. 2015 Mar 9;49:8.19.1-8.19.16. doi: 10.1002/0471250953.bi0819s49.
2
Detection of protein complexes from affinity purification/mass spectrometry data.
BMC Syst Biol. 2012;6 Suppl 3(Suppl 3):S4. doi: 10.1186/1752-0509-6-S3-S4. Epub 2012 Dec 17.
3
ROCS: a reproducibility index and confidence score for interaction proteomics studies.
BMC Bioinformatics. 2012 Jun 8;13:128. doi: 10.1186/1471-2105-13-128.
5
Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT.
Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:8.15.1-8.15.23. doi: 10.1002/0471250953.bi0815s39.
6
Computational detection of protein complexes in AP-MS experiments.
Proteomics. 2012 May;12(10):1663-8. doi: 10.1002/pmic.201100508.
7
Mapping Protein-Protein Interactions Using Affinity Purification and Mass Spectrometry.
Methods Mol Biol. 2017;1610:231-249. doi: 10.1007/978-1-4939-7003-2_15.
9
Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions.
Nat Protoc. 2014 Nov;9(11):2539-54. doi: 10.1038/nprot.2014.164. Epub 2014 Oct 2.
10
Using ProHits to store, annotate, and analyze affinity purification-mass spectrometry (AP-MS) data.
Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:8.16.1-8.16.32. doi: 10.1002/0471250953.bi0816s39.

引用本文的文献

5
Streptolysin O accelerates the conversion of plasminogen to plasmin.
Nat Commun. 2024 Nov 25;15(1):10212. doi: 10.1038/s41467-024-54173-6.
6
Functional analysis of a common BAG3 allele associated with protection from heart failure.
Nat Cardiovasc Res. 2023 Jul;2(7):615-628. doi: 10.1038/s44161-023-00288-w. Epub 2023 Jun 26.
7
Endogenous ZAP affects Zika virus RNA interactome.
RNA Biol. 2024 Jan;21(1):1-10. doi: 10.1080/15476286.2024.2388911. Epub 2024 Aug 25.
8
SARS-CoV-2 NSP12 associates with TRiC and the P323L substitution acts as a host adaption.
J Virol. 2023 Nov 30;97(11):e0042423. doi: 10.1128/jvi.00424-23. Epub 2023 Nov 6.
9
Tick-borne flavivirus NS5 antagonizes interferon signaling by inhibiting the catalytic activity of TYK2.
EMBO Rep. 2023 Dec 6;24(12):e57424. doi: 10.15252/embr.202357424. Epub 2023 Oct 20.
10
Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets.
Nat Commun. 2023 Sep 27;14(1):6030. doi: 10.1038/s41467-023-41442-z.

本文引用的文献

1
Biological network exploration with Cytoscape 3.
Curr Protoc Bioinformatics. 2014 Sep 8;47:8.13.1-24. doi: 10.1002/0471250953.bi0813s47.
2
Pfam: the protein families database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. doi: 10.1093/nar/gkt1223. Epub 2013 Nov 27.
3
The CRAPome: a contaminant repository for affinity purification-mass spectrometry data.
Nat Methods. 2013 Aug;10(8):730-6. doi: 10.1038/nmeth.2557. Epub 2013 Jul 7.
4
Protein complex-based analysis framework for high-throughput data sets.
Sci Signal. 2013 Feb 26;6(264):rs5. doi: 10.1126/scisignal.2003629.
5
Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT.
Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:8.15.1-8.15.23. doi: 10.1002/0471250953.bi0815s39.
6
Using the KEGG database resource.
Curr Protoc Bioinformatics. 2012 Jun;Chapter 1:1.12.1-1.12.43. doi: 10.1002/0471250953.bi0112s38.
7
Global landscape of HIV-human protein complexes.
Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.
8
SAINT: probabilistic scoring of affinity purification-mass spectrometry data.
Nat Methods. 2011 Jan;8(1):70-3. doi: 10.1038/nmeth.1541. Epub 2010 Dec 5.
9
BisoGenet: a new tool for gene network building, visualization and analysis.
BMC Bioinformatics. 2010 Feb 17;11:91. doi: 10.1186/1471-2105-11-91.
10
Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.
Bioinformatics. 2010 Apr 1;26(7):966-8. doi: 10.1093/bioinformatics/btq054. Epub 2010 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验