Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Sci Signal. 2013 Feb 26;6(264):rs5. doi: 10.1126/scisignal.2003629.
Analysis of high-throughput data increasingly relies on pathway annotation and functional information derived from Gene Ontology. This approach has limitations, in particular for the analysis of network dynamics over time or under different experimental conditions, in which modules within a network rather than complete pathways might respond and change. We report an analysis framework based on protein complexes, which are at the core of network reorganization. We generated a protein complex resource for human, Drosophila, and yeast from the literature and databases of protein-protein interaction networks, with each species having thousands of complexes. We developed COMPLEAT (http://www.flyrnai.org/compleat), a tool for data mining and visualization for complex-based analysis of high-throughput data sets, as well as analysis and integration of heterogeneous proteomics and gene expression data sets. With COMPLEAT, we identified dynamically regulated protein complexes among genome-wide RNA interference data sets that used the abundance of phosphorylated extracellular signal-regulated kinase in cells stimulated with either insulin or epidermal growth factor as the output. The analysis predicted that the Brahma complex participated in the insulin response.
高通量数据的分析越来越依赖于从基因本体论中获得的途径注释和功能信息。这种方法有其局限性,特别是在分析随时间或在不同实验条件下的网络动态时,网络中的模块而不是完整的途径可能会做出反应并发生变化。我们报告了一个基于蛋白质复合物的分析框架,这些复合物是网络重组的核心。我们从文献和蛋白质-蛋白质相互作用网络数据库中为人类、果蝇和酵母生成了蛋白质复合物资源,每个物种都有成千上万个复合物。我们开发了 COMPLEAT(http://www.flyrnai.org/compleat),这是一种用于数据挖掘和可视化的工具,用于基于复合物的高通量数据集分析,以及对异质蛋白质组学和基因表达数据集的分析和整合。使用 COMPLEAT,我们从使用细胞中磷酸化细胞外信号调节激酶的丰度作为输出的胰岛素或表皮生长因子刺激的全基因组 RNA 干扰数据集中鉴定出动态调节的蛋白质复合物。该分析预测,Brahma 复合物参与了胰岛素反应。