Suppr超能文献

用于存在不依从性的双臂随机临床试验的贝叶斯序贯监测设计

Bayesian sequential monitoring design for two-arm randomized clinical trials with noncompliance.

作者信息

Shen Weining, Ning Jing, Yuan Ying

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A.

出版信息

Stat Med. 2015 Jun 15;34(13):2104-15. doi: 10.1002/sim.6474. Epub 2015 Mar 10.

Abstract

In early-phase clinical trials, interim monitoring is commonly conducted based on the estimated intent-to-treat effect, which is subject to bias in the presence of noncompliance. To address this issue, we propose a Bayesian sequential monitoring trial design based on the estimation of the causal effect using a principal stratification approach. The proposed design simultaneously considers efficacy and toxicity outcomes and utilizes covariates to predict a patient's potential compliance behavior and identify the causal effects. Based on accumulating data, we continuously update the posterior estimates of the causal treatment effects and adaptively make the go/no-go decision for the trial. Numerical results show that the proposed method has desirable operating characteristics and addresses the issue of noncompliance.

摘要

在早期临床试验中,中期监测通常基于意向性治疗效应的估计进行,而在存在不依从性的情况下,该效应会存在偏差。为解决这一问题,我们提出一种基于主要分层方法估计因果效应的贝叶斯序贯监测试验设计。所提出的设计同时考虑疗效和毒性结果,并利用协变量预测患者潜在的依从行为并识别因果效应。基于不断积累的数据,我们持续更新因果治疗效应的后验估计,并自适应地做出试验的继续/停止决策。数值结果表明,所提出的方法具有理想的操作特性,并解决了不依从性问题。

相似文献

2
Bayesian phase II clinical trial design with noncompliance.存在不依从情况的贝叶斯II期临床试验设计
Stat Med. 2021 Sep 10;40(20):4457-4472. doi: 10.1002/sim.9041. Epub 2021 May 28.
6
Adaptive Bayesian randomized trials: realizing their potential.自适应贝叶斯随机试验:挖掘其潜力。
J Bone Joint Surg Am. 2012 Jul 18;94 Suppl 1:29-33. doi: 10.2106/JBJS.L.00094.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验