Suppr超能文献

关于倾向得分在主要因果效应估计中的应用。

On the use of propensity scores in principal causal effect estimation.

作者信息

Jo Booil, Stuart Elizabeth A

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5795, USA.

出版信息

Stat Med. 2009 Oct 15;28(23):2857-75. doi: 10.1002/sim.3669.

Abstract

We examine the practicality of propensity score methods for estimating causal treatment effects conditional on intermediate posttreatment outcomes (principal effects) in the context of randomized experiments. In particular, we focus on the sensitivity of principal causal effect estimates to violation of principal ignorability, which is the primary assumption that underlies the use of propensity score methods to estimate principal effects. Under principal ignorability (PI), principal strata membership is conditionally independent of the potential outcome under control given the pre-treatment covariates; i.e. there are no differences in the potential outcomes under control across principal strata given the observed pretreatment covariates. Under this assumption, principal scores modeling principal strata membership can be estimated based solely on the observed covariates and used to predict strata membership and estimate principal effects. While this assumption underlies the use of propensity scores in this setting, sensitivity to violations of it has not been studied rigorously. In this paper, we explicitly define PI using the outcome model (although we do not actually use this outcome model in estimating principal scores) and systematically examine how deviations from the assumption affect estimates, including how the strength of association between principal stratum membership and covariates modifies the performance. We find that when PI is violated, very strong covariate predictors of stratum membership are needed to yield accurate estimates of principal effects.

摘要

我们研究了倾向得分方法在随机试验背景下估计基于治疗后中间结果(主效应)的因果治疗效应的实用性。特别地,我们关注主因果效应估计对主可忽略性假设违背的敏感性,主可忽略性是使用倾向得分方法估计主效应的主要假设。在主可忽略性(PI)假设下,给定预处理协变量时,主分层成员身份与对照下的潜在结果条件独立;即,给定观察到的预处理协变量,主分层之间对照下的潜在结果没有差异。在此假设下,仅基于观察到的协变量就可以估计对主分层成员身份进行建模的主得分,并用于预测分层成员身份和估计主效应。虽然此假设是在这种情况下使用倾向得分的基础,但对其违背的敏感性尚未得到严格研究。在本文中,我们使用结果模型明确地定义了PI(尽管我们在估计主得分时实际上并未使用此结果模型),并系统地研究了与该假设的偏差如何影响估计,包括主分层成员身份与协变量之间的关联强度如何改变估计性能。我们发现,当PI被违背时,需要非常强的分层成员身份协变量预测因子才能准确估计主效应。

相似文献

1
On the use of propensity scores in principal causal effect estimation.
Stat Med. 2009 Oct 15;28(23):2857-75. doi: 10.1002/sim.3669.
2
Assessing the sensitivity of methods for estimating principal causal effects.
Stat Methods Med Res. 2015 Dec;24(6):657-74. doi: 10.1177/0962280211421840. Epub 2011 Oct 3.
3
Performance of principal scores to estimate the marginal compliers causal effect of an intervention.
Stat Med. 2016 Feb 28;35(5):752-67. doi: 10.1002/sim.6735. Epub 2015 Sep 17.
4
Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects.
Stat Med. 2024 Aug 30;43(19):3664-3688. doi: 10.1002/sim.10153. Epub 2024 Jun 18.
5
A refreshing account of principal stratification.
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
7
Identification and estimation of causal effects in the presence of confounded principal strata.
Stat Med. 2024 Sep 30;43(22):4372-4387. doi: 10.1002/sim.10175. Epub 2024 Jul 29.
8
Sensitivity analyses for the principal ignorability assumption using multiple imputation.
Pharm Stat. 2023 Jan;22(1):64-78. doi: 10.1002/pst.2260. Epub 2022 Aug 23.
10
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.

引用本文的文献

1
An Example to Illustrate Randomized Trial Estimands and Estimators.
Am Stat. 2025;79(3):383-392. doi: 10.1080/00031305.2025.2468399. Epub 2025 Apr 7.
4
Causal Inference Over a Subpopulation: The Effect of Malaria Vaccine in Women During Pregnancy.
Stat Med. 2024 Nov 30;43(27):5193-5202. doi: 10.1002/sim.10228. Epub 2024 Oct 7.
5
Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects.
Stat Med. 2024 Aug 30;43(19):3664-3688. doi: 10.1002/sim.10153. Epub 2024 Jun 18.
9
Handling parametric assumptions in principal causal effect estimation using Gaussian mixtures.
Stat Med. 2022 Jul 20;41(16):3039-3056. doi: 10.1002/sim.9401. Epub 2022 May 24.
10
Translating questions to estimands in randomized clinical trials with intercurrent events.
Stat Med. 2022 Jul 20;41(16):3211-3228. doi: 10.1002/sim.9398. Epub 2022 May 16.

本文引用的文献

2
Estimating intervention effects of prevention programs: accounting for noncompliance.
Prev Sci. 2008 Dec;9(4):288-98. doi: 10.1007/s11121-008-0104-y. Epub 2008 Oct 9.
6
Assessing the effect of an influenza vaccine in an encouragement design.
Biostatistics. 2000 Mar;1(1):69-88. doi: 10.1093/biostatistics/1.1.69.
7
The compliance score as a regressor in randomized trials.
Biostatistics. 2003 Jul;4(3):327-40. doi: 10.1093/biostatistics/4.3.327.
8
10
Principal stratification in causal inference.
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验