Suppr超能文献

增强的实质小动脉张力和星形胶质细胞信号传导可保护自发性高血压大鼠中神经血管耦合介导的实质小动脉血管舒张。

Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat.

作者信息

Iddings Jennifer A, Kim Ki Jung, Zhou Yiqiang, Higashimori Haruki, Filosa Jessica A

机构信息

Department of Physiology, Georgia Regents University, Augusta, Georgia, USA.

出版信息

J Cereb Blood Flow Metab. 2015 Jul;35(7):1127-36. doi: 10.1038/jcbfm.2015.31. Epub 2015 Mar 11.

Abstract

Functional hyperemia is the regional increase in cerebral blood flow upon increases in neuronal activity which ensures that the metabolic demands of the neurons are met. Hypertension is known to impair the hyperemic response; however, the neurovascular coupling mechanisms by which this cerebrovascular dysfunction occurs have yet to be fully elucidated. To determine whether altered cortical parenchymal arteriole function or astrocyte signaling contribute to blunted neurovascular coupling in hypertension, we measured parenchymal arteriole reactivity and vascular smooth muscle cell Ca(2+) dynamics in cortical brain slices from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. We found that vasoconstriction in response to the thromboxane A2 receptor agonist U46619 and basal vascular smooth muscle cell Ca(2+) oscillation frequency were significantly increased in parenchymal arterioles from SHR. In perfused and pressurized parenchymal arterioles, myogenic tone was significantly increased in SHR. Although K(+)-induced parenchymal arteriole dilations were similar in WKY and SHR, metabotropic glutamate receptor activation-induced parenchymal arteriole dilations were enhanced in SHR. Further, neuronal stimulation-evoked parenchymal arteriole dilations were similar in SHR and WKY. Our data indicate that neurovascular coupling is not impaired in SHR, at least at the level of the parenchymal arterioles.

摘要

功能性充血是指神经元活动增加时脑血流量的局部增加,以确保满足神经元的代谢需求。已知高血压会损害充血反应;然而,这种脑血管功能障碍发生的神经血管耦合机制尚未完全阐明。为了确定皮质实质小动脉功能改变或星形胶质细胞信号传导是否导致高血压中神经血管耦合减弱,我们测量了正常血压的Wistar Kyoto(WKY)大鼠和自发性高血压(SHR)大鼠皮质脑片中实质小动脉的反应性和血管平滑肌细胞Ca(2+)动力学。我们发现,在SHR的实质小动脉中,对血栓素A2受体激动剂U46619的血管收缩反应和基础血管平滑肌细胞Ca(2+)振荡频率显著增加。在灌注和加压的实质小动脉中,SHR的肌源性张力显著增加。虽然WKY和SHR中K(+)诱导的实质小动脉扩张相似,但SHR中代谢型谷氨酸受体激活诱导的实质小动脉扩张增强。此外,SHR和WKY中神经元刺激诱发的实质小动脉扩张相似。我们的数据表明,至少在实质小动脉水平上,SHR中的神经血管耦合没有受损。

相似文献

2
Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.
J Neurosci. 2016 Dec 14;36(50):12624-12639. doi: 10.1523/JNEUROSCI.1300-16.2016. Epub 2016 Nov 7.
4
Endothelial dysfunction augments myogenic arteriolar constriction in hypertension.
Hypertension. 1993 Dec;22(6):913-21. doi: 10.1161/01.hyp.22.6.913.
5
Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
Circ Res. 2004 Nov 12;95(10):e73-81. doi: 10.1161/01.RES.0000148636.60732.2e. Epub 2004 Oct 21.
6
Tone-dependent vascular responses to astrocyte-derived signals.
Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2855-63. doi: 10.1152/ajpheart.91451.2007. Epub 2008 May 2.
7
Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction.
J Neurosci. 2015 May 27;35(21):8245-57. doi: 10.1523/JNEUROSCI.4486-14.2015.
8
Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor.
Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H127-36. doi: 10.1152/ajpheart.00168.2015. Epub 2015 Apr 24.

引用本文的文献

2
Blood pressure variability compromises vascular function in middle-aged mice.
bioRxiv. 2024 Oct 24:2024.10.21.619509. doi: 10.1101/2024.10.21.619509.
3
A quantitative model for human neurovascular coupling with translated mechanisms from animals.
PLoS Comput Biol. 2023 Jan 6;19(1):e1010818. doi: 10.1371/journal.pcbi.1010818. eCollection 2023 Jan.
4
Guidelines for the measurement of vascular function and structure in isolated arteries and veins.
Am J Physiol Heart Circ Physiol. 2021 Jul 1;321(1):H77-H111. doi: 10.1152/ajpheart.01021.2020. Epub 2021 May 14.
5
Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension.
Front Physiol. 2020 Sep 25;11:584135. doi: 10.3389/fphys.2020.584135. eCollection 2020.
6
Vascular and neural basis of the BOLD signal.
Curr Opin Neurobiol. 2019 Oct;58:61-69. doi: 10.1016/j.conb.2019.06.004. Epub 2019 Jul 21.
9
Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1304-H1315. doi: 10.1152/ajpheart.00207.2018. Epub 2018 Aug 17.

本文引用的文献

2
Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity.
J Appl Physiol (1985). 2014 Jul 1;117(1):53-9. doi: 10.1152/japplphysiol.00253.2014. Epub 2014 May 1.
3
Capillary pericytes regulate cerebral blood flow in health and disease.
Nature. 2014 Apr 3;508(7494):55-60. doi: 10.1038/nature13165. Epub 2014 Mar 26.
4
Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice.
Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1698-708. doi: 10.1152/ajpheart.00377.2013. Epub 2013 Oct 4.
5
Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension.
Stroke. 2013 Jul;44(7):1957-64. doi: 10.1161/STROKEAHA.111.000185. Epub 2013 Jun 4.
7
Glutamate-dependent neuroglial calcium signaling differs between young and adult brain.
Science. 2013 Jan 11;339(6116):197-200. doi: 10.1126/science.1226740.
9
Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation.
J Physiol. 2012 Apr 1;590(7):1757-70. doi: 10.1113/jphysiol.2011.222778. Epub 2012 Feb 6.
10
Glial and neuronal control of brain blood flow.
Nature. 2010 Nov 11;468(7321):232-43. doi: 10.1038/nature09613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验