Morishita Hirofumi, Cabungcal Jan-Harry, Chen Ying, Do Kim Q, Hensch Takao K
FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
Biol Psychiatry. 2015 Sep 15;78(6):396-402. doi: 10.1016/j.biopsych.2014.12.026. Epub 2015 Jan 24.
Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity.
Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group).
Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells.
A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
氧化应激以及躯体周围γ-氨基丁酸回路的特定损伤是精神分裂症大脑及其动物模型的特征。这些快速放电抑制性中间神经元的正常成熟通常定义了经验依赖性皮质可塑性的关键时期。
在此,我们通过基因诱导仅限于小白蛋白阳性细胞的氧化还原失调来关联这些过程,并以视觉系统为模型(每组3 - 6只小鼠)研究其对关键期可塑性的影响。
氧化应激伴随着神经元周围网络的显著丧失,而神经元周围网络通常包裹成熟的快速放电细胞以限制成年期可塑性。因此,即使超过其自然关键期的峰值,新皮质仍保持可塑性。当氧化还原失调作用于兴奋性主细胞时,未观察到这些效应。
因此,细胞特异性的氧化还原状态调节平衡了皮质网络的可塑性和稳定性。大脑可塑性发育轨迹的时间错乱可能部分是精神疾病病理生理学的基础。反过来,这种延长的发育可塑性可能为针对精神分裂症大脑可塑性的认知干预提供治疗机会。