Suppr超能文献

快速放电中间神经元氧化还原失调时皮层可塑性的延长时期

Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons.

作者信息

Morishita Hirofumi, Cabungcal Jan-Harry, Chen Ying, Do Kim Q, Hensch Takao K

机构信息

FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

出版信息

Biol Psychiatry. 2015 Sep 15;78(6):396-402. doi: 10.1016/j.biopsych.2014.12.026. Epub 2015 Jan 24.

Abstract

BACKGROUND

Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity.

METHODS

Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group).

RESULTS

Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells.

CONCLUSIONS

A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.

摘要

背景

氧化应激以及躯体周围γ-氨基丁酸回路的特定损伤是精神分裂症大脑及其动物模型的特征。这些快速放电抑制性中间神经元的正常成熟通常定义了经验依赖性皮质可塑性的关键时期。

方法

在此,我们通过基因诱导仅限于小白蛋白阳性细胞的氧化还原失调来关联这些过程,并以视觉系统为模型(每组3 - 6只小鼠)研究其对关键期可塑性的影响。

结果

氧化应激伴随着神经元周围网络的显著丧失,而神经元周围网络通常包裹成熟的快速放电细胞以限制成年期可塑性。因此,即使超过其自然关键期的峰值,新皮质仍保持可塑性。当氧化还原失调作用于兴奋性主细胞时,未观察到这些效应。

结论

因此,细胞特异性的氧化还原状态调节平衡了皮质网络的可塑性和稳定性。大脑可塑性发育轨迹的时间错乱可能部分是精神疾病病理生理学的基础。反过来,这种延长的发育可塑性可能为针对精神分裂症大脑可塑性的认知干预提供治疗机会。

相似文献

2

引用本文的文献

5
Perineuronal Nets: From Structure to Neurological Disorders.神经元周围网络:从结构到神经疾病
Curr Med Chem. 2025;32(9):1685-1701. doi: 10.2174/0109298673258290231009111633.
10
Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity.精神病谱系疾病作为前额叶关键期可塑性障碍。
Neuropsychopharmacology. 2023 Jan;48(1):168-185. doi: 10.1038/s41386-022-01451-w. Epub 2022 Sep 30.

本文引用的文献

3
9
10
Cognitive remediation in schizophrenia.精神分裂症的认知矫正。
Clin Psychopharmacol Neurosci. 2012 Dec;10(3):125-35. doi: 10.9758/cpn.2012.10.3.125. Epub 2012 Dec 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验