Suppr超能文献

前体mRNA剪接在营养诱导的基因表达和代谢改变中的作用。

Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism.

作者信息

Ravi Suhana, Schilder Rudolf J, Kimball Scot R

机构信息

Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and.

Departments of Entomology and Biology, The Pennsylvania State University, State College, PA.

出版信息

J Nutr. 2015 May;145(5):841-6. doi: 10.3945/jn.114.203216. Epub 2015 Mar 11.

Abstract

Precursor mRNA (pre-mRNA) splicing is a critical step in gene expression that results in the removal of intronic sequences from immature mRNA, leading to the production of mature mRNA that can be translated into protein. Alternative pre-mRNA splicing is the process whereby alternative exons and/or introns are selectively included or excluded, generating mature mRNAs that encode proteins that may differ in function. The resulting alterations in the pattern of protein isoform expression can result in changes in protein-protein interaction, subcellular localization, and flux through metabolic pathways. Although basic mechanisms of pre-mRNA splicing of introns and exons are reasonably well characterized, how these mechanisms are regulated remains poorly understood. The goal of this review is to highlight selected recent advances in our understanding of the regulation of pre-mRNA splicing by nutrients and modulation of nutrient metabolism that result from changes in pre-mRNA splicing.

摘要

前体信使核糖核酸(前体mRNA)剪接是基因表达中的关键步骤,该过程会从未成熟的mRNA中去除内含子序列,从而产生可被翻译成蛋白质的成熟mRNA。可变前体mRNA剪接是一个过程,通过该过程,可变外显子和/或内含子被选择性地包含或排除,产生编码功能可能不同的蛋白质的成熟mRNA。蛋白质异构体表达模式的这种变化会导致蛋白质-蛋白质相互作用、亚细胞定位以及代谢途径通量的改变。尽管内含子和外显子的前体mRNA剪接的基本机制已得到相当充分的表征,但这些机制如何被调控仍知之甚少。本综述的目的是强调我们在理解营养素对前体mRNA剪接的调控以及前体mRNA剪接变化导致的营养代谢调节方面的最新进展。

相似文献

1
Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism.
J Nutr. 2015 May;145(5):841-6. doi: 10.3945/jn.114.203216. Epub 2015 Mar 11.
2
Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
Cancer Treat Res. 2013;158:41-94. doi: 10.1007/978-3-642-31659-3_3.
3
Regulation of mammalian pre-mRNA splicing.
Sci China C Life Sci. 2009 Mar;52(3):253-60. doi: 10.1007/s11427-009-0037-0. Epub 2009 Mar 18.
4
Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities.
Nucleic Acids Res. 2005 Apr 11;33(7):2078-89. doi: 10.1093/nar/gki338. Print 2005.
5
SR protein kinases: the splice of life.
Biochem Cell Biol. 1999;77(4):293-8.
6
Impairment of pre-mRNA splicing in liver disease: mechanisms and consequences.
World J Gastroenterol. 2010 Jul 7;16(25):3091-102. doi: 10.3748/wjg.v16.i25.3091.
7
Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
Annu Rev Biochem. 2015;84:291-323. doi: 10.1146/annurev-biochem-060614-034316. Epub 2015 Mar 12.
9
Alternative pre-mRNA splicing and proteome expansion in metazoans.
Nature. 2002 Jul 11;418(6894):236-43. doi: 10.1038/418236a.
10
Anything but Ordinary - Emerging Splicing Mechanisms in Eukaryotic Gene Regulation.
Trends Genet. 2021 Apr;37(4):355-372. doi: 10.1016/j.tig.2020.10.008. Epub 2020 Nov 15.

引用本文的文献

1
Alternative splicing: hallmark and therapeutic opportunity in metabolic liver disease.
Gastroenterol Rep (Oxf). 2025 May 26;13:goaf044. doi: 10.1093/gastro/goaf044. eCollection 2025.
2
Differences in alternative splicing and their potential underlying factors between animals and plants.
J Adv Res. 2024 Oct;64:83-98. doi: 10.1016/j.jare.2023.11.017. Epub 2023 Nov 20.
6
Lipin 1 modulates mRNA splicing during fasting adaptation in liver.
JCI Insight. 2021 Sep 8;6(17):e150114. doi: 10.1172/jci.insight.150114.
7
Significance of PD1 Alternative Splicing in Celiac Disease as a Novel Source for Diagnostic and Therapeutic Target.
Front Immunol. 2021 Jun 16;12:678400. doi: 10.3389/fimmu.2021.678400. eCollection 2021.
10
Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease.
J Clin Endocrinol Metab. 2019 Aug 1;104(8):3389-3402. doi: 10.1210/jc.2019-00021.

本文引用的文献

1
Vitamin D and alternative splicing of RNA.
J Steroid Biochem Mol Biol. 2015 Apr;148:310-7. doi: 10.1016/j.jsbmb.2014.09.025. Epub 2014 Oct 16.
2
Role of Acinus in regulating retinoic acid-responsive gene pre-mRNA splicing.
J Cell Physiol. 2015 Apr;230(4):791-801. doi: 10.1002/jcp.24804.
3
The IRE1α-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells.
Cell Res. 2014 Sep;24(9):1137-40. doi: 10.1038/cr.2014.55. Epub 2014 May 6.
4
Regulation of alternative pre-mRNA splicing.
Methods Mol Biol. 2014;1126:55-82. doi: 10.1007/978-1-62703-980-2_5.
5
Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets.
Prostaglandins Leukot Essent Fatty Acids. 2013 Oct;89(5):345-50. doi: 10.1016/j.plefa.2013.08.004. Epub 2013 Aug 26.
6
Dietary salt intake modulates differential splicing of the Na-K-2Cl cotransporter NKCC2.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1139-48. doi: 10.1152/ajprenal.00259.2013. Epub 2013 Aug 14.
7
A quick look at biochemistry: carbohydrate metabolism.
Clin Biochem. 2013 Oct;46(15):1339-52. doi: 10.1016/j.clinbiochem.2013.04.027. Epub 2013 May 14.
9
Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K.
Biochim Biophys Acta. 2013 Sep;1829(9):905-15. doi: 10.1016/j.bbagrm.2013.04.009. Epub 2013 Apr 28.
10
Regulation of splicing by SR proteins and SR protein-specific kinases.
Chromosoma. 2013 Jun;122(3):191-207. doi: 10.1007/s00412-013-0407-z. Epub 2013 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验