Suppr超能文献

将染色质可及性数据纳入序列到表达的建模中。

Incorporating chromatin accessibility data into sequence-to-expression modeling.

作者信息

Peng Pei-Chen, Hassan Samee Md Abul, Sinha Saurabh

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.

出版信息

Biophys J. 2015 Mar 10;108(5):1257-67. doi: 10.1016/j.bpj.2014.12.037.

Abstract

Prediction of gene expression levels from regulatory sequences is one of the major challenges of genomic biology today. A particularly promising approach to this problem is that taken by thermodynamics-based models that interpret an enhancer sequence in a given cellular context specified by transcription factor concentration levels and predict precise expression levels driven by that enhancer. Such models have so far not accounted for the effect of chromatin accessibility on interactions between transcription factor and DNA and consequently on gene-expression levels. Here, we extend a thermodynamics-based model of gene expression, called GEMSTAT (Gene Expression Modeling Based on Statistical Thermodynamics), to incorporate chromatin accessibility data and quantify its effect on accuracy of expression prediction. In the new model, called GEMSTAT-A, accessibility at a binding site is assumed to affect the transcription factor's binding strength at the site, whereas all other aspects are identical to the GEMSTAT model. We show that this modification results in significantly better fits in a data set of over 30 enhancers regulating spatial expression patterns in the blastoderm-stage Drosophila embryo. It is important to note that the improved fits result not from an overall elevated accessibility in active enhancers but from the variation of accessibility levels within an enhancer. With whole-genome DNA accessibility measurements becoming increasingly popular, our work demonstrates how such data may be useful for sequence-to-expression models. It also calls for future advances in modeling accessibility levels from sequence and the transregulatory context, so as to predict accurately the effect of cis and trans perturbations on gene expression.

摘要

从调控序列预测基因表达水平是当今基因组生物学面临的主要挑战之一。解决这个问题的一种特别有前景的方法是基于热力学的模型所采用的方法,该模型在由转录因子浓度水平指定的给定细胞环境中解释增强子序列,并预测由该增强子驱动的精确表达水平。到目前为止,这类模型尚未考虑染色质可及性对转录因子与DNA之间相互作用的影响,进而对基因表达水平的影响。在这里,我们扩展了一个基于热力学的基因表达模型,称为GEMSTAT(基于统计热力学的基因表达建模),以纳入染色质可及性数据,并量化其对表达预测准确性的影响。在新模型GEMSTAT-A中,假定结合位点的可及性会影响转录因子在该位点的结合强度,而所有其他方面与GEMSTAT模型相同。我们表明,这种修改在调控胚盘期果蝇胚胎空间表达模式的30多个增强子的数据集上产生了明显更好的拟合。需要注意的是,拟合的改善并非源于活性增强子中整体可及性的提高,而是源于增强子内可及性水平的变化。随着全基因组DNA可及性测量越来越普遍,我们的工作证明了此类数据如何有助于序列到表达模型。它还呼吁在从序列和转录调控背景对可及性水平进行建模方面取得进一步进展,以便准确预测顺式和反式扰动对基因表达的影响。

相似文献

1
Incorporating chromatin accessibility data into sequence-to-expression modeling.
Biophys J. 2015 Mar 10;108(5):1257-67. doi: 10.1016/j.bpj.2014.12.037.
3
Hormone-dependent control of developmental timing through regulation of chromatin accessibility.
Genes Dev. 2017 May 1;31(9):862-875. doi: 10.1101/gad.298182.117. Epub 2017 May 23.
4
A synergistic DNA logic predicts genome-wide chromatin accessibility.
Genome Res. 2016 Oct;26(10):1430-1440. doi: 10.1101/gr.199778.115. Epub 2016 Jul 25.
5
Modeling gene regulation from paired expression and chromatin accessibility data.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):E4914-E4923. doi: 10.1073/pnas.1704553114. Epub 2017 Jun 2.
6
The Role of Chromatin Accessibility in cis-Regulatory Evolution.
Genome Biol Evol. 2019 Jul 1;11(7):1813-1828. doi: 10.1093/gbe/evz103.
7
Quantitative modeling of gene expression using DNA shape features of binding sites.
Nucleic Acids Res. 2016 Jul 27;44(13):e120. doi: 10.1093/nar/gkw446. Epub 2016 Jun 1.
10
Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding.
Methods Cell Biol. 2012;110:263-83. doi: 10.1016/B978-0-12-388403-9.00011-4.

引用本文的文献

1
CEBPD regulates CD47 and MAP4K4 via chromatin accessibility in canine mammary tumor monocytes.
Sci Rep. 2025 Jul 2;15(1):23404. doi: 10.1038/s41598-025-06296-z.
2
Thermodynamics-based modeling reveals regulatory effects of indirect transcription factor-DNA binding.
iScience. 2022 Mar 24;25(5):104152. doi: 10.1016/j.isci.2022.104152. eCollection 2022 May 20.
3
The Role of Chromatin Accessibility in cis-Regulatory Evolution.
Genome Biol Evol. 2019 Jul 1;11(7):1813-1828. doi: 10.1093/gbe/evz103.
4
Why does the magnitude of genotype-by-environment interaction vary?
Ecol Evol. 2018 May 8;8(12):6342-6353. doi: 10.1002/ece3.4128. eCollection 2018 Jun.
5
Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data.
Natl Sci Rev. 2016 Jun;3(2):240-251. doi: 10.1093/nsr/nww025. Epub 2016 Apr 19.
6
Quantitative modeling of gene expression using DNA shape features of binding sites.
Nucleic Acids Res. 2016 Jul 27;44(13):e120. doi: 10.1093/nar/gkw446. Epub 2016 Jun 1.
7
The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.
PLoS Comput Biol. 2016 Apr 22;12(4):e1004891. doi: 10.1371/journal.pcbi.1004891. eCollection 2016 Apr.
8
Analysis of functional importance of binding sites in the Drosophila gap gene network model.
BMC Genomics. 2015;16 Suppl 13(Suppl 13):S7. doi: 10.1186/1471-2164-16-S13-S7. Epub 2015 Dec 16.

本文引用的文献

1
In pursuit of design principles of regulatory sequences.
Nat Rev Genet. 2014 Jul;15(7):453-68. doi: 10.1038/nrg3684. Epub 2014 Jun 10.
2
Transcriptional enhancers: from properties to genome-wide predictions.
Nat Rev Genet. 2014 Apr;15(4):272-86. doi: 10.1038/nrg3682. Epub 2014 Mar 11.
3
Quantitative modeling of a gene's expression from its intergenic sequence.
PLoS Comput Biol. 2014 Mar 6;10(3):e1003467. doi: 10.1371/journal.pcbi.1003467. eCollection 2014 Mar.
4
Identifying and mapping cell-type-specific chromatin programming of gene expression.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):E645-54. doi: 10.1073/pnas.1312523111. Epub 2014 Jan 27.
5
The grammar of transcriptional regulation.
Hum Genet. 2014 Jun;133(6):701-11. doi: 10.1007/s00439-013-1413-1. Epub 2014 Jan 5.
6
Chromatin modifiers and remodellers: regulators of cellular differentiation.
Nat Rev Genet. 2014 Feb;15(2):93-106. doi: 10.1038/nrg3607. Epub 2013 Dec 24.
7
A comparative evaluation on prediction methods of nucleosome positioning.
Brief Bioinform. 2014 Nov;15(6):1014-27. doi: 10.1093/bib/bbt062. Epub 2013 Sep 10.
8
Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy.
PLoS Genet. 2013;9(8):e1003571. doi: 10.1371/journal.pgen.1003571. Epub 2013 Aug 1.
9
Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos.
Nat Methods. 2013 Aug;10(8):774-80. doi: 10.1038/nmeth.2558. Epub 2013 Jul 14.
10
Evaluating thermodynamic models of enhancer activity on cellular resolution gene expression data.
Methods. 2013 Jul 15;62(1):79-90. doi: 10.1016/j.ymeth.2013.03.005. Epub 2013 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验