Suppr超能文献

一种新型的褐球固氮菌(SRIAz3)在水稻耐盐胁迫中发挥作用。

A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice.

作者信息

Sahoo Ranjan Kumar, Ansari Mohammad Wahid, Pradhan Madhusmita, Dangar Tushar K, Mohanty Santanu, Tuteja Narendra

机构信息

a Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India.

出版信息

Plant Signal Behav. 2014;9(7):e29377. doi: 10.4161/psb.29377.

Abstract

The plant growth promoting rhizobacteria (PGPRs) as a biofertilizer provide agricultural benefits to advance various crops productivity. Recently, we discovered a novel Azotobacter vinellandii (SRIAz3) from rice rhizosphere, which is well competent to improve rice productivity. In this study, we investigated a role of A. vinellandii to confer salinity tolerance in rice (var. IR64). A. vinellandii inoculated rice plants showed higher proline and malondialdehyde content under 200 mM NaCl stress as compared with uninoculated one. The endogenous level of plant hormones viz., indole-3 acetic acid (IAA), gibberellins (GA3), zeatint (Zt) was higher in A. vinellandii inoculated plants under high salinity. The fresh biomass of root and shoot were relatively elevated in A. vinellandii inoculated rice. Further, the macronutrient profile was superior in A. vinellandii inoculated plants under salinity as compared with non-inoculated plants. The present findings further suggest that A. vinellandii, a potent biofertilzer, potentially confer salinity stress tolerance in rice via sustaining growth and improving compatible solutes and nutrients profile and thereby crop improvement.

摘要

作为生物肥料的植物促生根际细菌(PGPRs)为提高各种作物的生产力带来了农业效益。最近,我们从水稻根际发现了一种新型的维氏固氮菌(SRIAz3),它在提高水稻生产力方面表现出色。在本研究中,我们调查了维氏固氮菌在赋予水稻(品种IR64)耐盐性方面的作用。与未接种的水稻植株相比,接种维氏固氮菌的水稻植株在200 mM NaCl胁迫下脯氨酸和丙二醛含量更高。在高盐度条件下,接种维氏固氮菌的植株中植物激素(即吲哚 - 3 - 乙酸(IAA)、赤霉素(GA3)、玉米素(Zt))的内源水平更高。接种维氏固氮菌的水稻根和地上部分的鲜生物量相对增加。此外,与未接种的植株相比,接种维氏固氮菌的植株在盐胁迫下的大量营养素状况更优。目前的研究结果进一步表明,维氏固氮菌作为一种有效的生物肥料,可能通过维持生长、改善相容性溶质和营养状况,从而赋予水稻耐盐胁迫能力,进而实现作物改良。

相似文献

1
A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice.
Plant Signal Behav. 2014;9(7):e29377. doi: 10.4161/psb.29377.
4
Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).
Microbiol Res. 2018 Jan;206:25-32. doi: 10.1016/j.micres.2017.09.009. Epub 2017 Sep 23.
9
Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins.
Chemosphere. 2020 Oct;256:127157. doi: 10.1016/j.chemosphere.2020.127157. Epub 2020 May 22.

引用本文的文献

1
Symbiotic microalgae and microbes: a new frontier in saline agriculture.
Front Microbiol. 2025 Apr 22;16:1540274. doi: 10.3389/fmicb.2025.1540274. eCollection 2025.
4
The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture.
Microorganisms. 2021 Aug 30;9(9):1841. doi: 10.3390/microorganisms9091841.
6
Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants.
Front Microbiol. 2020 Jul 7;11:1216. doi: 10.3389/fmicb.2020.01216. eCollection 2020.
7
8
Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.
Front Plant Sci. 2017 Feb 9;8:172. doi: 10.3389/fpls.2017.00172. eCollection 2017.
9
Volatile-Mediated Effects Predominate in Growth Promotion and Salt Stress Tolerance of .
Front Microbiol. 2016 Nov 17;7:1838. doi: 10.3389/fmicb.2016.01838. eCollection 2016.

本文引用的文献

2
Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.
Int J Genomics. 2014;2014:701596. doi: 10.1155/2014/701596. Epub 2014 Apr 3.
3
Overexpression of a Vesicle Trafficking Gene, OsRab7, enhances salt tolerance in rice.
ScientificWorldJournal. 2014 Feb 12;2014:483526. doi: 10.1155/2014/483526. eCollection 2014.
4
Auxin and the integration of environmental signals into plant root development.
Ann Bot. 2013 Dec;112(9):1655-65. doi: 10.1093/aob/mct229. Epub 2013 Oct 17.
5
7
Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?
Plant Cell Environ. 2014 Feb;37(2):300-11. doi: 10.1111/pce.12157. Epub 2013 Jul 24.
8
Cytokinins: metabolism and function in plant adaptation to environmental stresses.
Trends Plant Sci. 2012 Mar;17(3):172-9. doi: 10.1016/j.tplants.2011.12.005. Epub 2012 Jan 9.
9
SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response.
Plant Physiol. 2011 Dec;157(4):1900-13. doi: 10.1104/pp.111.187302. Epub 2011 Oct 19.
10
Hormone balance and abiotic stress tolerance in crop plants.
Curr Opin Plant Biol. 2011 Jun;14(3):290-5. doi: 10.1016/j.pbi.2011.02.001. Epub 2011 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验