Suppr超能文献

克氏锥虫硫氧还蛋白II的分子特征及相互作用组分析

Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

作者信息

Arias Diego G, Piñeyro María Dolores, Iglesias Alberto A, Guerrero Sergio A, Robello Carlos

机构信息

Instituto de Agrobiotecnología del Litoral, Facultad de Bioquímica y Ciencias Biológicas (CONICET, Universidad Nacional del Litoral), Santa Fe, Argentina.

Unidad de Biología Molecular-Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

出版信息

J Proteomics. 2015 Apr 29;120:95-104. doi: 10.1016/j.jprot.2015.03.001. Epub 2015 Mar 10.

Abstract

UNLABELLED

Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi.

BIOLOGICAL SIGNIFICANCE

T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi antioxidant mechanisms constitute an active field of investigation, since they could provide the basis for a rational drug development. Peroxide detoxification in this parasite is achieved by ascorbate peroxidase and different thiol-dependent peroxidases. Among them, both mitochondrial and cytosolic tryparedoxin peroxidases, typical two-cysteine peroxiredoxins, were found to be important for hydrogen peroxide and peroxynitrite detoxification and their expression levels correlated with parasite infectivity and virulence. In trypanosomes tryparedoxins and not thioredoxins act as peroxiredoxin reductases, suggesting that these enzymes substitute thioredoxins in these parasites. T. cruzi possesses two tryparedoxin genes, TcTXNI and TcTXN II. Since thioredoxins are proteins with several targets actively participating of complex redox networks, we have previously investigated if this is the case also for TcTXNI, for which we described relevant partners (J Proteomics. 2011;74(9):1683-92). In this manuscript we investigated the interactions of TcTXNII. We have designed an active site mutant tryparedoxin II lacking the resolving cysteine and, through the expression of this mutant protein and its incubation with T. cruzi proteins, hetero disulfide complexes were isolated by affinity chromatography purification and identified by electrophoresis separation and MS identification. This allowed us to identify sixteen TcTXNII interacting proteins which are involved in different and relevant cellular processes. Moreover, we demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum.

摘要

未标记

克氏锥虫是恰加斯病的病原体,它拥有两种锥虫硫氧还蛋白(TcTXNI和TcTXNII),属于硫氧还蛋白超家族。硫氧还蛋白是氧化还原酶,介导锥虫硫醇和过氧化物酶之间的电子转移。这与宿主细胞不同,在宿主细胞中这些活动由硫氧还蛋白介导。这些差异使硫氧还蛋白成为药物开发的一个有吸引力的靶点。在之前的一项工作中,我们对TcTXNI进行了表征,包括氧化还原相互作用组。在这项工作中,我们将研究扩展到TcTXNII。我们证明TcTXNII是一种跨膜蛋白,锚定在线粒体和内质网表面,氧化还原结构域面向细胞质。它将在循环后期发育过程中表达。为了继续对克氏锥虫的氧化还原相互作用组进行表征,我们设计了一个缺乏解离半胱氨酸的活性位点突变体TcTXNII,并通过表达这种突变蛋白并与克氏锥虫蛋白一起孵育,通过亲和色谱法分离异二硫键复合物并通过质谱法进行鉴定。这使我们能够鉴定出16种与TcTXNII相互作用的蛋白,它们参与广泛的细胞过程,表明了TcTXNII的相关性,并有助于我们对克氏锥虫氧化还原相互作用组的理解。

生物学意义

克氏锥虫是恰加斯病的病原体,是拉丁美洲的一个主要卫生问题。估计感染人数约为800万,2800万人有感染风险,流行地区每年约有20000人死亡。目前没有可用的疫苗,目前使用的大多数药物是几十年前开发的,疗效不一且有不良副作用。该寄生虫能够在巨噬细胞吞噬体内生存和增殖,在那里它会接触到巨噬细胞激活产生的细胞毒性活性氧和氮物种。因此,克氏锥虫的抗氧化机制是一个活跃的研究领域,因为它们可以为合理的药物开发提供基础。该寄生虫中的过氧化物解毒是通过抗坏血酸过氧化物酶和不同的硫醇依赖性过氧化物酶实现的。其中,线粒体和胞质锥虫硫氧还蛋白过氧化物酶,即典型的双半胱氨酸过氧化物酶,被发现对过氧化氢和过氧亚硝酸盐解毒很重要,它们的表达水平与寄生虫的感染性和毒力相关。在锥虫中,锥虫硫氧还蛋白而不是硫氧还蛋白作为过氧化物酶还原酶,这表明这些酶在这些寄生虫中替代硫氧还蛋白。克氏锥虫拥有两个锥虫硫氧还蛋白基因,TcTXNI和TcTXN II。由于硫氧还蛋白是具有多个靶点并积极参与复杂氧化还原网络的蛋白质,我们之前研究了TcTXNI是否也是如此,为此我们描述了相关的相互作用蛋白(《蛋白质组学杂志》。2011年;74(9):1683 - 92)。在本论文中,我们研究了TcTXNII的相互作用。我们设计了一个缺乏解离半胱氨酸的活性位点突变体锥虫硫氧还蛋白II,并通过表达这种突变蛋白并将其与克氏锥虫蛋白一起孵育,通过亲和色谱纯化分离异二硫键复合物,并通过电泳分离和质谱鉴定进行鉴定。这使我们能够鉴定出16种与TcTXNII相互作用的蛋白,它们参与不同且相关的细胞过程。此外,我们证明TcTXNII是一种跨膜蛋白,锚定在线粒体和内质网表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验