文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

活性氧物种(ROS)在恰加斯病中的双重相反作用:对病原体有益,对宿主有害。

Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host.

机构信息

Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile.

Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.

出版信息

Oxid Med Cell Longev. 2020 Dec 10;2020:8867701. doi: 10.1155/2020/8867701. eCollection 2020.


DOI:10.1155/2020/8867701
PMID:33376582
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7746463/
Abstract

Chagas disease is a neglected tropical disease, which affects an estimate of 6-7 million people worldwide. Chagas disease is caused by , which is a eukaryotic flagellate unicellular organism. At the primary infection sites, these parasites are phagocytized by macrophages, which produce reactive oxygen species (ROS) in response to the infection with . The ROS produce damage to the host tissues; however, macrophage-produced ROS is also used as a signal for proliferation. At the later stages of infection, mitochondrial ROS is produced by the infected cardiomyocytes that contribute to the oxidative damage, which persists at the chronic stage of the disease. The oxidative damage leads to a functional impairment of the heart. In this review article, we will discuss the mechanisms by which is able to deal with the oxidative stress and how this helps the parasite growth at the acute phase of infection and how the oxidative stress affects the cardiomyopathy at the chronic stage of the Chagas disease. We will describe the mechanisms used by the parasite to deal with ROS and reactive nitrogen species (RNS) through the trypanothione and the mechanisms used to repair the damaged DNA. Also, a description of the events produced by ROS at the acute and chronic stages of the disease is presented. Lastly, we discuss the benefits of ROS for growth and proliferation and the possible mechanisms involved in this phenomenon. Hypothesis is put forward to explain the molecular mechanisms by which ROS triggers parasite growth and proliferation and how ROS is able to produce a long persisting damage on cardiomyocytes even in the absence of the parasite.

摘要

恰加斯病是一种被忽视的热带病,估计影响全球 600 至 700 万人。恰加斯病是由克氏锥虫引起的,它是一种真核鞭毛单细胞生物。在初次感染部位,这些寄生虫被巨噬细胞吞噬,巨噬细胞会产生活性氧物质(ROS)来应对感染。ROS 会对宿主组织造成损伤,但巨噬细胞产生的 ROS 也被用作寄生虫增殖的信号。在感染后期,被感染的心肌细胞会产生线粒体 ROS,这有助于氧化损伤,这种损伤在疾病的慢性阶段持续存在。氧化损伤导致心脏功能障碍。在这篇综述文章中,我们将讨论克氏锥虫应对氧化应激的机制,以及这种机制如何帮助寄生虫在感染的急性期生长,以及氧化应激如何影响恰加斯病的慢性阶段的心肌病。我们将描述寄生虫通过硫代葡萄糖苷和 DNA 修复机制来应对 ROS 和活性氮物质(RNS)的机制。还描述了在疾病的急性期和慢性期产生的 ROS 事件。最后,我们讨论了 ROS 对寄生虫生长和增殖的益处以及涉及这种现象的可能机制。提出了一个假设来解释 ROS 触发寄生虫生长和增殖的分子机制,以及 ROS 如何在没有寄生虫的情况下对心肌细胞产生长期持续的损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/25bf82fc2f43/OMCL2020-8867701.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/42bd195a0b27/OMCL2020-8867701.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/3a9d0b3376cb/OMCL2020-8867701.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/fdda29aef62e/OMCL2020-8867701.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/3939f572dbd1/OMCL2020-8867701.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/25bf82fc2f43/OMCL2020-8867701.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/42bd195a0b27/OMCL2020-8867701.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/3a9d0b3376cb/OMCL2020-8867701.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/fdda29aef62e/OMCL2020-8867701.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/3939f572dbd1/OMCL2020-8867701.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb8/7746463/25bf82fc2f43/OMCL2020-8867701.005.jpg

相似文献

[1]
Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host.

Oxid Med Cell Longev. 2020

[2]
ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart.

PLoS Pathog. 2018-4-19

[3]
How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways.

Mutat Res Rev Mutat Res. 2015-12-29

[4]
Identification of host antioxidant effectors as thioridazine targets: Impact on cardiomyocytes infection and Trypanosoma cruzi-induced acute myocarditis.

Biochim Biophys Acta Mol Basis Dis. 2024-8

[5]
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors.

Oxid Med Cell Longev. 2021

[6]
Cardiomyocyte diffusible redox mediators control infection: role of parasite mitochondrial iron superoxide dismutase.

Biochem J. 2018-4-5

[7]
DNA repair BER pathway inhibition increases cell death caused by oxidative DNA damage in Trypanosoma cruzi.

J Cell Biochem. 2011-8

[8]
Trypanosoma cruzi Needs a Signal Provided by Reactive Oxygen Species to Infect Macrophages.

PLoS Negl Trop Dis. 2016-4-1

[9]
Different Transcriptomic Response to Infection in hiPSC-Derived Cardiomyocytes From Chagas Disease Patients With and Without Chronic Cardiomyopathy.

Front Cell Infect Microbiol. 2022

[10]
Oxidative stress, cardiomyocytes premature senescence and contractile dysfunction in in vitro and in vivo experimental models of Chagas disease.

Acta Trop. 2023-8

引用本文的文献

[1]
Growth Is Impaired by Oleoresin and Leaf Hydroalcoholic Extract from in Human Trophoblast and Placental Explants.

Pathogens. 2025-7-25

[2]
Bovine Endometrium Drives and Responds to Divergence of In Vitro Produced Conceptus Biochemistry.

FASEB J. 2025-8-31

[3]
Beyond cardiac embolism and cryptogenic stroke: unveiling the mechanisms of cerebrovascular events in Chagas disease.

Lancet Reg Health Am. 2025-8-8

[4]
Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis.

Redox Biol. 2025-6

[5]
Coinfection by multiple clones: a new perspective on host-parasite relationship with consequences for pathogenesis and management of Chagas disease.

Microbiol Mol Biol Rev. 2025-6-25

[6]
The multiple biological activities of hyperoside: from molecular mechanisms to therapeutic perspectives in neoplastic and non-neoplastic diseases.

Front Pharmacol. 2025-3-3

[7]
The Therapeutic Potential of Supersulfides in Oxidative Stress-Related Diseases.

Biomolecules. 2025-1-23

[8]
Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection.

PLoS Pathog. 2025-1-31

[9]
Immune response, oxidative stress, and histological changes of Wistar rats after being administered with Parascaris equorum antigen.

Sci Rep. 2024-8-5

[10]
An and investigation of the antitrypanosomal activities of the stem bark extracts of (Pierre) Engl.

Heliyon. 2024-3-16

本文引用的文献

[1]
Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications.

DNA Repair (Amst). 2020-11

[2]
Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance.

PLoS Pathog. 2020-7-21

[3]
Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far?

DNA Repair (Amst). 2020

[4]
Editorial: Immunoparasitology: A Unique Interplay Between Host and Pathogen.

Front Immunol. 2020-5-7

[5]
GCN2-Like Kinase Modulates Stress Granule Formation During Nutritional Stress in .

Front Cell Infect Microbiol. 2020

[6]
Preparedness for Chagas disease spreading worldwide.

Infect Dis Poverty. 2020-4-27

[7]
Potential Role of Antioxidants as Adjunctive Therapy in Chagas Disease.

Oxid Med Cell Longev. 2020-3-26

[8]
DNA lesions and repair in trypanosomatids infection.

Genet Mol Biol. 2020-3-27

[9]
Reactive oxygen species and nitric oxide imbalances lead to in vivo and in vitro arrhythmogenic phenotype in acute phase of experimental Chagas disease.

PLoS Pathog. 2020-3-11

[10]
Molecular Basis of the Beneficial Actions of Resveratrol.

Arch Med Res. 2020-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索