Kautzky Alexander, Baldinger Pia, Souery Daniel, Montgomery Stuart, Mendlewicz Julien, Zohar Joseph, Serretti Alessandro, Lanzenberger Rupert, Kasper Siegfried
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20A-1090 Vienna, Austria.
Université Libre de Bruxelles, Belgium; Psy Pluriel Centre Europèen de Psychologie Medicale, Belgium.
Eur Neuropsychopharmacol. 2015 Apr;25(4):441-53. doi: 10.1016/j.euroneuro.2015.01.001. Epub 2015 Feb 2.
For over a decade, the European Group for the Study of Resistant Depression (GSRD) has examined single nucleotide polymorphisms (SNP) and clinical parameters in regard to treatment outcome. However, an interaction based model combining these factors has not been established yet. Regarding the low effect of individual SNPs, a model investigating the interactive role of SNPs and clinical variables in treatment-resistant depression (TRD) seems auspicious. Thus 225 patients featured in previous work of the GSRD were enrolled in this investigation. According to data availability and previous positive results, 12 SNPs in HTR2A, COMT, ST8SIA2, PPP3CC and BDNF as well as 8 clinical variables featured in other GSRD studies were chosen for this investigation. Random forests algorithm were used for variable shrinkage and k-means clustering for surfacing variable characteristics determining treatment outcome. Using these machine learning and clustering algorithms, we detected a set of 3 SNPs and a clinical variable that was significantly associated with treatment response. About 62% of patients exhibiting the allelic combination of GG-GG-TT for rs6265, rs7430 and rs6313 of the BDNF, PPP3CC and HTR2A genes, respectively, and without melancholia showed a HAM-D decline under 17 compared to about 34% of the whole study sample. Our random forests prediction model for treatment outcome showed that combining clinical and genetic variables gradually increased the prediction performance recognizing correctly 25% of responders using all 4 factors. Thus, we could confirm our previous findings and furthermore show the strength of an interaction-based model combining statistical algorithms in identifying and operating treatment predictors.
十多年来,欧洲难治性抑郁症研究小组(GSRD)一直在研究单核苷酸多态性(SNP)和与治疗结果相关的临床参数。然而,尚未建立一个结合这些因素的基于相互作用的模型。鉴于单个SNP的作用较小,一个研究SNP与临床变量在难治性抑郁症(TRD)中的相互作用的模型似乎很有前景。因此,GSRD先前研究中的225名患者被纳入本研究。根据数据可用性和先前的阳性结果,本研究选择了HTR2A、COMT、ST8SIA2、PPP3CC和BDNF基因中的12个SNP以及GSRD其他研究中的8个临床变量。使用随机森林算法进行变量筛选,使用k均值聚类来揭示决定治疗结果的变量特征。通过这些机器学习和聚类算法,我们检测到一组3个SNP和一个与治疗反应显著相关的临床变量。分别具有BDNF、PPP3CC和HTR2A基因的rs6265、rs7430和rs6313的GG-GG-TT等位基因组合且无忧郁症的患者中,约62%的患者汉密尔顿抑郁量表(HAM-D)得分下降至17分以下,而整个研究样本中这一比例约为34%。我们的治疗结果随机森林预测模型表明,结合临床和基因变量可逐步提高预测性能,使用所有4个因素可正确识别25%的反应者。因此,我们可以证实我们先前的发现,并进一步展示基于相互作用的模型结合统计算法在识别和操作治疗预测指标方面的优势。