Suppr超能文献

欧洲耐药性抑郁症研究组(GSRD)的研究结果——进一步研究和临床实践的基础。

Results of the European Group for the Study of Resistant Depression (GSRD) - basis for further research and clinical practice.

机构信息

Department of Psychiatry and Psychotherapy, Medical University of Vienna , Vienna , Austria.

Department of Biomedical and NeuroMotor Sciences, University of Bologna , Bologna , Italy.

出版信息

World J Biol Psychiatry. 2019 Jul;20(6):427-448. doi: 10.1080/15622975.2019.1635270. Epub 2019 Jul 25.

Abstract

The overview outlines two decades of research from the European Group for the Study of Resistant Depression (GSRD) that fundamentally impacted evidence-based algorithms for diagnostics and psychopharmacotherapy of treatment-resistant depression (TRD). The GSRD staging model characterising response, non-response and resistance to antidepressant (AD) treatment was applied to 2762 patients in eight European countries. In case of non-response, dose escalation and switching between different AD classes did not show superiority over continuation of original AD treatment. Predictors for TRD were symptom severity, duration of the current major depressive episode (MDE), suicidality, psychotic and melancholic features, comorbid anxiety and personality disorders, add-on treatment, non-response to the first AD, adverse effects, high occupational level, recurrent disease course, previous hospitalisations, positive family history of MDD, early age of onset and novel associations of single nucleoid polymorphisms (SNPs) within the , , , and genes and gene pathways associated with neuroplasticity, intracellular signalling and chromatin silencing. A prediction model reaching accuracy of above 0.7 highlighted symptom severity, suicidality, comorbid anxiety and lifetime MDEs as the most informative predictors for TRD. Applying machine-learning algorithms, a signature of three SNPs of the , and genes and lacking melancholia predicted treatment response. The GSRD findings offer a unique and balanced perspective on TRD representing foundation for further research elaborating on specific clinical and genetic hypotheses and treatment strategies within appropriate study-designs, especially interaction-based models and randomized controlled trials.

摘要

概述介绍了欧洲难治性抑郁症研究组(GSRD)二十年来的研究成果,这些研究从根本上影响了诊断和治疗抵抗性抑郁症(TRD)的基于证据的算法。该研究组应用抗抑郁药(AD)治疗反应、无反应和抵抗的分级模型,对来自八个欧洲国家的 2762 名患者进行了研究。在无反应的情况下,增加剂量和在不同 AD 类别之间转换并不能显示优于继续使用原始 AD 治疗。TRD 的预测因素包括症状严重程度、当前重度抑郁发作(MDE)的持续时间、自杀意念、精神病和忧郁特征、共病焦虑和人格障碍、附加治疗、对首次 AD 治疗无反应、不良反应、高职业水平、反复发作、以前的住院治疗、MDD 的阳性家族史、发病年龄较早以及与神经可塑性、细胞内信号转导和染色质沉默相关的基因和基因途径中的单核苷酸多态性(SNP)的新关联。一个准确性超过 0.7 的预测模型强调了症状严重程度、自杀意念、共病焦虑和终生 MDEs 是 TRD 的最具信息量的预测因素。应用机器学习算法,发现 、 和 基因中的三个 SNP 缺失和无忧郁症可预测治疗反应。GSRD 的发现为 TRD 提供了独特而平衡的视角,为进一步研究提供了基础,这些研究进一步阐述了特定的临床和遗传假设以及治疗策略,特别是基于相互作用的模型和随机对照试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验