Suppr超能文献

通过超临界二氧化碳气体抗溶剂法制备氨苄青霉素纳米颗粒。

Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.

作者信息

Esfandiari Nadia, Ghoreishi Seyyed M

机构信息

Department of Chemical Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.

Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

出版信息

AAPS PharmSciTech. 2015 Dec;16(6):1263-9. doi: 10.1208/s12249-014-0264-y. Epub 2015 Mar 14.

Abstract

The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.

摘要

研究了通过超临界气体抗溶剂(GAS)过程对氨苄西林进行微粉化。通过有效的GAS变量(如初始溶质浓度、温度、压力和抗溶剂添加速率)显著控制了粒径分布。研究了每个变量在三个水平下的影响。用扫描电子显微镜(SEM)和Zetasizer Nano ZS对沉淀颗粒进行了分析。结果表明,降低温度和初始溶质浓度,同时提高抗溶剂速率和压力,会导致氨苄西林粒径减小。通过改变GAS有效变量,氨苄西林的平均粒径在220-430nm范围内。通过傅里叶变换红外光谱(FTIR)和高效液相色谱(HPLC)分析了GAS合成的氨苄西林纳米颗粒与未处理的氨苄西林相比的纯度。结果表明,在GAS过程中,氨苄西林纳米颗粒的结构保持不变。

相似文献

1
Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
AAPS PharmSciTech. 2015 Dec;16(6):1263-9. doi: 10.1208/s12249-014-0264-y. Epub 2015 Mar 14.
2
Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
Int J Pharm. 2006 Feb 17;309(1-2):71-80. doi: 10.1016/j.ijpharm.2005.11.008. Epub 2006 Jan 18.
3
Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
Adv Drug Deliv Rev. 2008 Feb 14;60(3):411-32. doi: 10.1016/j.addr.2007.02.003. Epub 2007 Oct 11.
9
Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
Biotechnol Prog. 2003 Mar-Apr;19(2):549-56. doi: 10.1021/bp0256317.
10
Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.
Int J Pharm. 2014 Dec 30;477(1-2):564-77. doi: 10.1016/j.ijpharm.2014.10.070. Epub 2014 Nov 3.

引用本文的文献

本文引用的文献

1
Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.
Int J Pharm. 2009 Oct 1;380(1-2):201-5. doi: 10.1016/j.ijpharm.2009.06.030. Epub 2009 Jul 2.
2
Study of the RESS process for producing beclomethasone-17,21-dipropionate particles suitable for pulmonary delivery.
AAPS PharmSciTech. 2008;9(1):39-46. doi: 10.1208/s12249-007-9004-x. Epub 2008 Jan 8.
3
Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications.
Adv Drug Deliv Rev. 2008 Feb 14;60(3):299-327. doi: 10.1016/j.addr.2007.09.001. Epub 2007 Oct 12.
4
Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
Int J Pharm. 2006 Feb 17;309(1-2):71-80. doi: 10.1016/j.ijpharm.2005.11.008. Epub 2006 Jan 18.
7
Supercritical fluid processing of proteins. I: lysozyme precipitation from organic solution.
Eur J Pharm Sci. 2000 Sep;11(3):239-45. doi: 10.1016/s0928-0987(00)00108-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验