Suppr超能文献

肉豆蔻酰化组分析揭示了细菌蛋白酶IpaJ对ARF GTP酶去酰化的协同机制。

Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ.

作者信息

Burnaevskiy Nikolay, Peng Tao, Reddick L Evan, Hang Howard C, Alto Neal M

机构信息

Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816, USA.

Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.

出版信息

Mol Cell. 2015 Apr 2;58(1):110-22. doi: 10.1016/j.molcel.2015.01.040. Epub 2015 Mar 12.

Abstract

N-myristoylation is an essential fatty acid modification that governs the localization and activity of cell signaling enzymes, architectural proteins, and immune regulatory factors. Despite its importance in health and disease, there are currently no methods for reversing protein myristoylation in vivo. Recently, the Shigella flexneri protease IpaJ was found to cleave myristoylated glycine of eukaryotic proteins, yet the discriminatory mechanisms of substrate selection required for targeted demyristoylation have not yet been evaluated. Here, we performed global myristoylome profiling of cells treated with IpaJ under distinct physiological conditions. The protease is highly promiscuous among diverse N-myristoylated proteins in vitro but is remarkably specific to Golgi-associated ARF/ARL family GTPases during Shigella infection. Reconstitution studies revealed a mechanistic framework for substrate discrimination based on IpaJ's function as a GTPase "effector" of bacterial origin. We now propose a concerted model for IpaJ function that highlights its potential for programmable demyristoylation in vivo.

摘要

N-肉豆蔻酰化是一种重要的脂肪酸修饰,它决定细胞信号酶、结构蛋白和免疫调节因子的定位与活性。尽管其在健康和疾病中具有重要意义,但目前尚无体内逆转蛋白质肉豆蔻酰化的方法。最近,发现福氏志贺氏菌蛋白酶IpaJ可切割真核蛋白质的肉豆蔻酰化甘氨酸,然而,靶向去肉豆蔻酰化所需的底物选择识别机制尚未得到评估。在此,我们对在不同生理条件下用IpaJ处理的细胞进行了全肉豆蔻酰化组分析。该蛋白酶在体外对多种N-肉豆蔻酰化蛋白具有高度的通用性,但在志贺氏菌感染期间对高尔基体相关ARF/ARL家族GTP酶具有显著特异性。重组研究揭示了基于IpaJ作为细菌来源GTP酶 “效应器” 功能的底物识别机制框架。我们现在提出了一个IpaJ功能协同模型,突出了其在体内进行可编程去肉豆蔻酰化的潜力。

相似文献

1
Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ.
Mol Cell. 2015 Apr 2;58(1):110-22. doi: 10.1016/j.molcel.2015.01.040. Epub 2015 Mar 12.
2
Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ.
Nature. 2013 Apr 4;496(7443):106-9. doi: 10.1038/nature12004. Epub 2013 Mar 27.
4
Preparation of myristoylated Arf1 and Arf6.
Methods Enzymol. 2005;404:164-74. doi: 10.1016/S0076-6879(05)04016-4.
5
High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase.
Small GTPases. 2013 Jan-Mar;4(1):3-8. doi: 10.4161/sgtp.22895. Epub 2013 Jan 1.
7
Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.
Nat Struct Biol. 2003 May;10(5):386-93. doi: 10.1038/nsb920.
8
Localization and function of Arf family GTPases.
Biochem Soc Trans. 2005 Aug;33(Pt 4):639-42. doi: 10.1042/BST0330639.
9
Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2334-9. doi: 10.1073/pnas.0500118102. Epub 2005 Feb 8.
10
Effect of N-Terminal Myristoylation on the Active Conformation of Gα-GTP.
Biochemistry. 2017 Jan 10;56(1):271-280. doi: 10.1021/acs.biochem.6b00388. Epub 2016 Dec 29.

引用本文的文献

1
Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma.
Front Cell Dev Biol. 2024 Nov 5;12:1413708. doi: 10.3389/fcell.2024.1413708. eCollection 2024.
2
Structural determinants of protein kinase A essential for CFTR channel activation.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2407728121. doi: 10.1073/pnas.2407728121. Epub 2024 Nov 4.
3
Monitoring host-pathogen interactions using chemical proteomics.
RSC Chem Biol. 2023 Nov 10;5(2):73-89. doi: 10.1039/d3cb00135k. eCollection 2024 Feb 7.
4
Lipid-anchored proteasomes control membrane protein homeostasis.
Sci Adv. 2023 Dec;9(48):eadj4605. doi: 10.1126/sciadv.adj4605. Epub 2023 Nov 29.
5
COPI vesicle formation and N-myristoylation are targetable vulnerabilities of senescent cells.
Nat Cell Biol. 2023 Dec;25(12):1804-1820. doi: 10.1038/s41556-023-01287-6. Epub 2023 Nov 27.
6
Pathogenicity and virulence of : A highly drug-resistant pathogen of increasing prevalence.
Virulence. 2023 Dec;14(1):2280838. doi: 10.1080/21505594.2023.2280838. Epub 2023 Nov 23.
7
DAT, deacylating autotransporter toxin, from demyristoylates Gα GTPases and contributes to cough.
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2308260120. doi: 10.1073/pnas.2308260120. Epub 2023 Sep 25.
8
Cell biology of protein-lipid conjugation.
Cell Struct Funct. 2023 May 11;48(1):99-112. doi: 10.1247/csf.23016. Epub 2023 Apr 6.
9
Immune evasion and persistence in enteric bacterial pathogens.
Gut Microbes. 2023 Jan-Dec;15(1):2163839. doi: 10.1080/19490976.2022.2163839.
10
The Salmonella T3SS1 effector IpaJ is regulated by ItrA and inhibits the MAPK signaling pathway.
PLoS Pathog. 2022 Dec 7;18(12):e1011005. doi: 10.1371/journal.ppat.1011005. eCollection 2022 Dec.

本文引用的文献

1
Global profiling of protein lipidation using chemical proteomic technologies.
Curr Opin Chem Biol. 2015 Feb;24:48-57. doi: 10.1016/j.cbpa.2014.10.016. Epub 2014 Nov 15.
3
Selective protection of an ARF1-GTP signaling axis by a bacterial scaffold induces bidirectional trafficking arrest.
Cell Rep. 2014 Mar 13;6(5):878-91. doi: 10.1016/j.celrep.2014.01.040. Epub 2014 Feb 27.
4
N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis.
Parasitology. 2014 Jan;141(1):37-49. doi: 10.1017/S0031182013000450. Epub 2013 Apr 24.
5
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.
6
Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ.
Nature. 2013 Apr 4;496(7443):106-9. doi: 10.1038/nature12004. Epub 2013 Mar 27.
7
Identification of lysine acetyltransferase substrates using bioorthogonal chemical proteomics.
Methods Mol Biol. 2013;981:201-10. doi: 10.1007/978-1-62703-305-3_16.
8
The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation.
Science. 2012 Nov 23;338(6110):1072-6. doi: 10.1126/science.1227026. Epub 2012 Oct 25.
9
Subversion of cell signaling by pathogens.
Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a006114. doi: 10.1101/cshperspect.a006114.
10
A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.
Cell. 2012 Feb 3;148(3):530-42. doi: 10.1016/j.cell.2012.01.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验