Suppr超能文献

通过对钠掺杂喷雾热解硫化物前驱体薄膜进行硒化处理得到的转换效率为10.7%的铜铟镓硫硒(Cu(In,Ga)(S,Se)₂)薄膜太阳能电池。

Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.

作者信息

Septina Wilman, Kurihara Masaaki, Ikeda Shigeru, Nakajima Yasuhiro, Hirano Toshiyuki, Kawasaki Yoshihito, Harada Takashi, Matsumura Michio

机构信息

†Research Center for Solar Energy Chemistry, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

出版信息

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6472-9. doi: 10.1021/am507684x. Epub 2015 Mar 23.

Abstract

Selenium-rich Cu(In,Ga)(S,Se)2 (CIGSSe) thin films on an Mo-coated soda-lime glass substrate were fabricated by spray pyrolysis of an aqueous precursor solution containing Cu(NO3)2, In(NO3)3, Ga(NO3)3, and thiourea followed by selenization at 560 °C for 10 min. We studied the effects of intentional sodium addition on the structural and morphological properties of the fabricated CIGSSe films by dissolving NaNO3 in the aqueous precursor solution. The addition of sodium was found to affect the morphology of the final CIGSSe film: the film had denser morphology than that of the CIGSSe film obtained without addition of NaNO3. Photoelectrochemical measurements also revealed that the acceptor density of the nondoped CIGSSe film was relatively high (N(a) = 7.2 × 10(17) cm(-3)) and the addition of sodium led to a more favorable value for solar cell application (N(a) = 1.8 × 10(17) cm(-3)). As a result, a solar cell based on the sodium-modified CIGSSe film exhibited maximum conversion efficiency of 8.8%, which was significantly higher than that of the cell based on nondoped CIGSSe (4.4%). In addition, by applying MgF2 antireflection coating to the device, the maximum efficiency was further improved to 10.7%.

摘要

通过对含有硝酸铜、硝酸铟、硝酸镓和硫脲的水性前驱体溶液进行喷雾热解,然后在560℃下硒化10分钟,在涂有钼的钠钙玻璃基板上制备了富硒的铜铟镓硒(CIGSSe)薄膜。我们通过将硝酸钠溶解在水性前驱体溶液中,研究了有意添加钠对制备的CIGSSe薄膜的结构和形态特性的影响。发现添加钠会影响最终CIGSSe薄膜的形态:该薄膜的形态比未添加硝酸钠时获得的CIGSSe薄膜更致密。光电化学测量还表明,未掺杂的CIGSSe薄膜的受主密度相对较高(N(a)=7.2×10(17) cm(-3)),添加钠会得到更有利于太阳能电池应用的值(N(a)=1.8×10(17) cm(-3))。结果,基于钠改性CIGSSe薄膜的太阳能电池表现出8.8%的最大转换效率,这显著高于基于未掺杂CIGSSe的电池(4.4%)。此外,通过在器件上涂覆氟化镁抗反射涂层,最大效率进一步提高到10.7%。

相似文献

2
Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.
ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22497-503. doi: 10.1021/acsami.5b06666. Epub 2015 Oct 1.
3
Sulfur-Alloying Effects on Cu(In,Ga)(S,Se) Solar Cell Fabricated Using Aqueous Spray Pyrolysis.
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45702-45708. doi: 10.1021/acsami.9b16192. Epub 2019 Nov 26.
4
Carbon- and oxygen-free Cu(InGa)(SSe)₂ solar cell with a 4.63% conversion efficiency by electrostatic spray deposition.
ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8369-77. doi: 10.1021/am501286d. Epub 2014 May 7.
5
Efficiency Improvement of Narrow Band Gap Cu(In,Ga)(S,Se) Solar Cell with Alkali Treatment via Aqueous Spray Pyrolysis Deposition.
ACS Appl Mater Interfaces. 2023 May 17;15(19):23199-23207. doi: 10.1021/acsami.3c02362. Epub 2023 May 4.
6
Spray pyrolysis of CuIn(S,Se)2 solar cells with 5.9% efficiency: a method to prevent Mo oxidation in ambient atmosphere.
ACS Appl Mater Interfaces. 2014 May 14;6(9):6638-43. doi: 10.1021/am500317m. Epub 2014 Apr 21.
7
Chalcogenization-Derived Band Gap Grading in Solution-Processed CuIn(x)Ga(1-x)(Se,S)₂ Thin-Film Solar Cells.
ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27391-6. doi: 10.1021/acsami.5b09054. Epub 2015 Dec 4.
8
Multiple-Color-Generating Cu(In,Ga)(S,Se) Thin-Film Solar Cells via Dichroic Film Incorporation for Power-Generating Window Applications.
ACS Appl Mater Interfaces. 2017 May 3;9(17):14817-14826. doi: 10.1021/acsami.7b01416. Epub 2017 Apr 20.
9
Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se) Thin Film Solar Cells.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36082-36091. doi: 10.1021/acsami.0c08749. Epub 2020 Jul 28.

引用本文的文献

4
Preparation of a CuGaSe single crystal and its photocathodic properties.
RSC Adv. 2020 Nov 5;10(66):40310-40315. doi: 10.1039/d0ra07904a. eCollection 2020 Nov 2.
5
Inorganic and Organic Solution-Processed Thin Film Devices.
Nanomicro Lett. 2017;9(1):3. doi: 10.1007/s40820-016-0106-4. Epub 2016 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验